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ABSTRACT

Heat pipes are highly reliable and efficient energy transport devices, which are being
considered for many terrestrial and space power thermal-management applications, such as
high—performance aeronautics and space nuclear and solar dynamic power systems. In this
work, a two—dimensional Heat Pipe Transient Analysis Model, "HPTAM", was developed
to simulate the transient operation of fully—thawed heat pipes and the startup of heat pipes
from a frozen state. The model incorporates: (a) sublimation and resolidification of
working fluid; (b) melting and freezing of the working fluid in the porous wick; (c)
evaporation of thawed working fluid and condensation as a thin liquid film on a frozen
substrate; (d) free—molecule, transition and continuum vapor flow regimes, using the
Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and
hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the
radius of curvature of the liquid meniscus at the liquid—vapor interface and the radial
location of the working fluid level (liquid or solid) in the wick. It also includes the
transverse momentum jump condition (capillary relationship of Pascal) at the liquid—vapor
interface and geometrically relates the radius of curvature of the liquid meniscus to the
volume fraction of vapor in the wick. The present model predicts the capillary limit and
partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling
submodel, which simulates accumulation of the excess liquid in the vapor core at the

condenser end.

HPTAM can handle both rectangular and cylindrical geometries. The model divides the
heat pipe into three transverse regions: wall, wick, and vapor regions, and solves the
complete form of governing equations in these regions. The heat pipe wick can be a wire—
screened mesh, an isotropic porous medium such as a powder or a bed of spheres, or an
open annulus separated from the vapor core by a thin sheet (with small holes to provide
capillary forces). HPTAM incorporates several working fluids such as lithium, sodium,
potassium and water, as well as various wall materials (tungsten, niobtum, zirconium,
stainless—steel, copper and carbon). Evaporation, condensation, sublimation and
resolidification rates are calculated using the kinetic theory relationship with an
accommodation coefficient of unity. To predict the flow of liquid in the porous wick of the
heat pipe, HPTAM uses the Brinkman—Forchheimer—extended Darcy model. This model
was successfully benchmarked against experimental data for natural convection of molten
gallium in a porous bed of glass beads. Also, HPTAM handles the phase—change of
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working fluid in the wick using a modified fixed—grid homogeneous enthalpy method. The
technique employs a mushy—cell temperature range as small as 2x10-8 K (limited by
machine accuracy only), without requiring under—relaxation of the temperatures and
generating numerical instabilities. Instead of using the harmonic mean discretization
scheme (HMDS) of Patankar, a simple method, based on the frozen volume fraction, was
developed to calculate the heat fluxes at the boundaries of the mushy cell. This method
improved the accuracy of the solution and reduced the oscillations in temperature time
histories (usually encountered when the HMDS is used) by one-to-two orders of
magnitude.

Because of the physical complexity of the problem, advanced numerical methods were
considered. Two segregated solution techniques, one based on the non—iterative Pressure
Implicit Splitting Operator (PISO), and the other based on the SIMPLEC segregated
iterative technique, were developed and tested for their stability and effectiveness in
reducing the CPU time while maintaining the accuracy of results. Various linear—system
solvers were also examined to determine which one was most efficient for solving the
problem at hand. Based on the results of these examinations, the segregated solution
technique using the SIMPLEC procedure was selected for HPTAM. To solve the five—
point linear Poisson equations resulting from the discretization of the mass balance
equations, a direct solution routine using Gaussian elimination was developed. The banded
version of the solver allowed significant decreases in computation time and memory storage
requirement. The iterative Strongly Implicit Solver was chosen to solve the five—point
linear equations resulting from the discretization of the energy and momentum balance

equations.

The development of this comprehensive model was guided by continuous benchmarking of
the model predictions with available experimental and numerical results. The accuracy of
the physical and numerical schemes for modeling heat and mass transfers in the wick was
verified using various benchmark problems, namely: (a) natural convection of liquid in a
square cavity; (b) natural convection of molten gallium in a porous bed of glass beads; (c)
one—-dimensional pure conduction solidification problem; (d) two-dimensional pure
conduction problem of freezing in a corner; and (e) the freezing of tin in a rectangular
cavity in the presence of natural convection. Numerical results of the frozen startup of a
radiatively—cooled water heat pipe are presented, which demonstrate the soudness of the
physical model and numerical approach used in HPTAM. The results illustrate the

importance of the sublimation and recondensation processes during the first period of the
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transient and the combined effects of phase—change and liquid hydrodynamics in the wick
during the startup of the low—temperature heat pipe. The startup is characterized by partial
recess of liquid in the evaporator wick after the capillary limit has been reached. After
enough working fluid was melted by resolidification and condensation in the adiabatic and
condenser sections of the heat pipe, resaturation of the wick was established before
complete dryout of the evaporator occurred, leading to a successful startup. Also, the heat
pipe model was validated using transient experimental data of a fully—thawed water heat
pipe constructed at the Institute for Space and Nuclear Power Studies. The calculated
steady—state vapor and wall axial temperature profiles and the transient power throughput
and vapor temperature were in good agreement with measurements. Results illustrated the
importance of the hydrodynamic coupling of the vapor and liquid phases and showed the
appearance during the heatup transient (disappearance during cooldown) of a pool of
excess liquid at the condenser end. Finally, the effects of input power and initial liquid
inventory in the water heat pipe on the wet point and liquid pooling, and on the vapor and

liquid pressure and temperature distributions were investigated in details.
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NOMENCLATURE

English

a cubic lattice parameter (m)

a radius of pipe (m)

a. accommodation coefficient

A cross—sectional area (m?2)

b distance between nearest neighbors in lattice (m)
bg  molar volume (m3/mole)

C inertia coefficient, Equations (2), (A-3)
Cp,  specific heat (J/kg K)

C,  heat capacity at constant volume (J/kg.K)
d wire diameter of screen (m)

D diffusion coefficient (W/m2.K)

D pipe diameter (m)

D deformation rates tensor

E external acceleration (m/s2)

Fraa  wall view factor

g gravity acceleration, g=9.81 m/s2

Gr  Grashof number, Gr=gBpL3(Ty-T¢)/ vi.2
h enthalpy (J/kg)

hg,  latent heat of vaporization (J/kg)

hREF  reference enthalpy of liquid phase (J/kg)
H height of the cavity (m)

Hg,s latent heat of fusion (J/kg)

H!  convective heat transfer coefficient (W/m2.K)
k Boltzmann constant, k=1.3804 x 10-23 J/K
k thermal conductivity (W/m.K)

K permeability of wick (m?)

Kn  Knudsen number (Kn = A/D)

L effective pipe length (m)

L mesh size of screen, L=1/N (m)

L width of the cavity (m)

m molecular mass (kg)

X1X



molecular weight (kg/mole)

evaporation/condensation/sublimation/resolidification mass flux (kg/m2.s)

2} 8 2

water jacket mass flow rate (kg/s)
molecular density (molecules/m3)

screen mesh number, N=1/L (1/inch)

Z Z =

5]

Avogadro number, N,= 6.0225 x 1023 molecules/mole
Nyirse axial location of first identifiable liquid film

Niast axial location of last cell bearing a liquid film

Nmush axial location of first interfacial mushy cell

N, number of axial numerical cells

P pressure (Pa)

P critical pressure (Pa)

Pr Prandtl number, Pr=v{ /0oy

g mean filter velocity in wick (m/s)
Q

conduction heat flux (W/m?)

r radial coordinate
R radius (m)
R radius of curvature of screen wire (m)

Ra  Rayleigh number, Ra=Pr Gr

Rc  radius of curvature of interfacial liquid meniscus (m)
R,  universal gas constant, Ry= kN, = 8.314 J/mol.K
R; radial location of numerical cell interface (m)

Rinc radius of liquid—/ solid—vapor interface (m)

R,  wick effective pore radius (m)

Ry radius of screen wick surface (m)

R, initial radius of solid—vapor interface (m)

St Stefan number, St =C,8(Tgys-Tc)/Hyys

t time (s)

t thickness of one screen layer, t=2d+m (m)

T temperature (K)

T.  critical temperature (K)

Te  cold wall temperature (K)

Trys  fluid fusion temperature (K)

Ty  hot wall temperature (K)

Tint  temperature of liquid- / solid-vapor interface (K)

Tin' water jacket inlet temperature (K)

XX



T,  initial liquid temperature (K)

To* dimensionless liquid superheat, Ty =k, (T, — Ty, )/[ks(Tgs = Tc)]
Trer reference temperature for evaluating enthalpy of liquid phase (K)
Ts, ambient temperature (K)

T*  dimensionless temperature, T*=kT/e

u, v radial and axial front locations (m)

1-3 velocity field

vy,  average molecular speed (m/s)

V,int radial velocity of displacement of LV interface (m/s)
Vol  wick cell volume (m3)

Vol, wick cell volume when Rjp=Ryk (m3)

Vol, volume of phase o in interfacial wick cell (m3)

V,  volume of hemispherical pores at wick surface (m?3)
V*  dimensionless axial velocity, V¥=Lgq,/ v

w width of the screen openings (m)

X coordinate along the width of the cavity (m)

z axial coordinate (m)

z coordinate along the height of the cavity (m)

Z; axial location of numerical cell interface (m)

Greek

o thermal diffusivity, o=k/(pC,) (m%/s)

Qp  vapor pore volume fraction in wick at liquid—vapor interface
B normalized clearance of screen, f=n/(2d)

Bp  liquid thermal expansion coefficient (1/K)

Br  liquid isothermal compressibility factor (1/Pa)

Y ratio of specific heat capacities

Y volume fraction of frozen fluid in wick voids

I convection-diffusion enthalpy flux (W/m?2)

o solid crust thickness (m)

8T  half width of mushy region (K)

AR; radial size of numerical cell (m)

At discretization time step (s)

Ax  discretization mesh size (m)

AZ; axial size of numerical cell (m)

XXi



€ volume porosity (void fraction) of wick
£ energy potential parameter (J)
€ local volume porosity, Equation (4.70)
€9 Wall emissivity
¢ figure of merit of working fluid, {=p (hyv-hp)o / p (W/m?2)
n screen interlayer clearance (m)
0 geometrical angle, Figure A-la
9 dimensionless temperature, O=(T-T¢c)/(T,-Tc)
0.  dimensionless temperature, 8; =(T -Tc)/(Ty-Te)
A molecular mean free path (m), Equation (B-1)
dynamic viscosity (kg/m.s)
He  cosine of contact angle of liquid meniscus at liquid—vapor interface, t.=Ry/R.
\% kinematic viscosity, v=/p (m?%/s)
density (kg/m3)
ps  close—packed solid phase density (kg/m3)
o surface tension of liquid (N/m)
(o] effective molecular diameter (m)

Ond Stefan—-Boltzmann constant, 6=5.67x10-8 W / m2.K4

T dimensionless time, T = ogt/L.2
T exponential period (s)
o} viscous dissipation

¢  dimensionless temperature, O =(T - T )/ (Ty-Thys)
Q) wire diameter—to—mesh size ratio, w=d/L

*  Kkinetic theory collision integral

Subscript / Superscript

a adiabatic region
c condenser region
e evaporator region

eff  effective property of wick
equ equilibrium

f working fluid

fus  fusion

i radial number of wick cell

int  liquid-/ solid— vapor interface

XXii



] axial cell number

L liquid phase of fluid

m porous matrix

n temporal discretization number
0 wall outer surface

p pore

r radial component

S frozen (solid) phase of fluid
sat  saturation

v vapor phase, liquid inner surface
\% vapor phase of fluid

v0  vapor phase, at beginning of evaporator
w wall region
W outer wall surface
wk  porous wick
z axial component

best estimate at new time

' correction
Operators
div  divergence of vector
0 partial derivative
A Laplacien of vector

q vector

Il  norm of vector

vV gradient of scalar

¥V gradient of vector operator

scalar product of vector

XXiii






1. INTRODUCTION

Heat pipes can transport relatively large amounts of energy over a significant distance with
a small temperature drop between the heat source and the heat sink. Since heat pipes have
no moving parts and operate passively in vacuum and in microgravity environments, they
are highly reliable and efficient energy transport devices and are being considered for many
terrestrial and space power thermal-management applications, such as high—performance

aeronautics and space nuclear and solar dynamic power systems.

Water and alkali metal heat pipes are currently being considered for passive cooling of
commercial nuclear reactors after shutdown. They are also being developed for solar
dynamics, nuclear space power systems and space platforms such as the space station
Freedom, either as the primary transport sub—system of for radiative heat rejection.
Nuclear space power systems may employ thermoelectric elements, thermionic elements,
closed Brayton cycle, or Free Piston Stirling Engines (the latter are being considered for a
lunar outpost), to convert thermal power to electrical power. Heat pipes operating at
temperatures in excess of 700 K employ liquid—metal working fluids while those operating

at lower temperature may employ non-liquid metal fluids such as water or ammonia.

In the temperature range of 300-500 K, water provides the best alternative for a working
fluid. Water heat pipes have been used in numerous terrestrial and space applications, such
as solar water heaters, cooling of molds during casting of aluminum and plastics, and

cooling of electronic components on board satellites.

Between 500 K and 700 K, there does not exist, to date, any working fluid with attractive
properties. Mercury has suitable vapor pressure and high figure of merit in this

temperature range, unfortunately, it is highly toxic and its use is not recommended.

In the temperature range of 700-1600 K, candidate heat pipe working fluids of interest for
high—performance space power applications are the alkali metals, potassium, sodium, and
lithium. Examples of these applications include heat transport from the reactor to the power
converter, heating and cooling of electrodes in thermionic converters, and heat rejection.
Additional uses of high temperature heat pipes are cooling of radiation shield,
electromagnetic pumps, control drums and drive motors, and thermal conditioning of

liquid—metal pumped loops during the startup and shutdown of power systems (Merrigan



1985). These potential applications have received the most attention in recent years with
the onset of advanced space power programs such as the SP-100 (Cox et al. 1991) and
Dynamic Isotope Power Subsystem (DIPS) studies (Dix 1991). An advantage of using
sodium or potassium working fluids in the temperature range 700-1100 K is their relatively
low melting temperature (98 °C and 64 °C, respectively), which is favorable for space
applications. The NaK-78 alloy has a melting temperature well below that of sodium and
potassium (-10 ©C), which is the reason why this particular working fluid was selected as
the primary coolant for all Russian (Romachka and Topaz) and American (SNAP-10A)
nuclear power systems launched in space since the late 1950's. At very high temperatures
(above 1200 K), lithium is a good choice as a heat pipe working fluid because of its high
latent heat of vaporization and high surface tension. Also, because of the very low vapor
pressure of this fluid, lithium heat pipes can operate at a much higher temperature than
potassium and sodium heat pipes without overpressurization of the container.

One of the concerns with the utilization of heat pipes in space and in some terrestrial
applications is understanding their transient behavior during startup from a frozen state.
The startup of high—temperature heat pipes from the frozen state has been extensively and
experimentally investigated (Deverall et al. 1970; Ivanovskii et al. 1982; Jang et al. 1990a;
Faghri et al. 1991; Jang 1995), and successful startup of such heat pipes is consistently
achieved. However, experiments on the startup of low—temperature heat pipes are rare.
Heat pipes using high vapor pressure working fluids (such as water and ammonia)
typically exhibit a uniform temperature startup, whereas those using fluids with low vapor
pressures (such as liquid metals, sodium, potassium and lithium) exhibit a frontal startup.
Deverall et al. (1970) successfully started a water heat pipe from a frozen state. Because of
the relatively high vapor pressure of water, even near the melting temperature, choked
and/or supersonic vapor flows were not encountered during the startup. Experimental

results showed that the heat pipe became immediately active where the ice was melted.

Previous investigations of the frozen startup of heat pipes generally assume uniform
distribution of the working fluid in the wick. Such assumption is found to be invalid
experimentally for low—temperature heat pipes. Redistribution of frozen working fluid in
low—temperature heat pipes occurs during startup due to sublimation and resolidification of
vapor (Kuramae 1992; and Ochterbeck and Peterson 1993). Such processes may prevent
successful re—startup of the heat pipe during cyclic operation. The vapor resolidifies in the
cooler parts of the heat pipe and cannot return back to the evaporator. Eventually, the wick

might completely dryout in the evaporator. In cases of low-temperature heat pipes with



large evaporator-to—condenser length ratio, complete blockage of the vapor channel was

observed, due to resolidification of working fluid (Ochterbeck and Peterson 1993).

The startup characteristics of low—temperature and high—temperature heat pipes from a
frozen state differ significantly due to differences in the vapor pressure of the working fluid
near the melting point. In low—temperature heat pipes, although the vapor pressure is large
enough so that the startup difficulties associated with the viscous and sonic limits are
avoided, significant migration of the working fluid from the evaporator to the colder
regions in the heat pipe occurs. Once the solid working fluid is melted in the evaporator,
dryout may occur due to immediate vaporization of the fluid. In the case of high~
temperature working fluids, the vapor flow in the heat pipe remains in the free—molecule
regime for temperatures well above the melting temperature. This has the beneficial effect
of minimizing the transport of the solid working fluid to the condenser by sublimation /
resolidification. The large thermal conductivity of liquid-metal working fluids also allows
melting of the working fluid in adiabatic and condenser sections by conduction, before

large scale evaporation of the liquid occurs.

Attempts have been made to fill the heat pipe with noncondensible gas to make it start more
readily. A significant decrease in startup time was noted by Ivanovskii et al. (1982) for
increasing amounts of noncondensible gas loading in sodium heat pipes. The effect of
noncondensible gas on the startup of a water heat pipe was also investigated by Ochterbeck
and Peterson (1993). The gas—vapor interface, observed visually, was found to be quite
sharp. In the region containing the gas, resolidification and condensation of water vapor
did not occur. A frontal startup, characteristic of high—temperature and gas—loaded heat

pipes, was observed in the gas—loaded water heat pipe.

The wide interest in heat pipes has stimulated the development of numerous steady—state
and transient models. Because the transient operation of heat pipes and the startup of heat
pipes from a frozen state involve several highly non-linear and tightly coupled heat and
mass transfer processes in the vapor, wick and wall regions, mathematical modeling of
these problems is quite complex. An analytical solution is unattainable, and except when
simplifying assumptions are made, the numerical solution could be tedious and require
large computation time. The following section reviews the previous and major heat pipe
modeling efforts, which included a variety of simplifying assumptions in the governing

equations, and a spectrum of numerical techniques to solve these equations.



1.1. SUMMARY ON HEAT PIPE MODELING

Heat pipe models can be classified into four categories: (a) models which simulate the
vapor flow region only; (b) models which simulate vapor, wick and wall regions but
ignore the liquid flow in the wick and the momentum coupling at the liquid-vapor (L-V)
interface; (c) liquid/vapor counter—current flow models which neglect the momentum
coupling at the L-V interface; (d) models which have the capability to predict the radius of
curvature of the liquid meniscus at the L-V interface in order to insure proper
hydrodynamic coupling of the liquid and vapor phases. Only a few models, however,
attempted to simulate the non—continuum vapor flow regimes occurring in high—
temperature heat pipes operating in the low temperature range, and the change of phase of
the working fluid in the wick during the startup of heat pipe from a frozen state. Table 1.1
summarizes the capabilities and important characteristics of major heat pipe models

developed after the year 1987.

In an attempt to describe the operation of heat pipe, Bowman (1987), Bowman and
Hitchcock (1988), Klein and Catton (1987) and Issacci et al. (1988, 1990 and 1991) have
developed two—dimensional transient models of vapor flow, which decoupled the vapor

from the liquid—wick and wall regions, except for a simplified interfacial energy balance.

Bowman and Hitchcock (1988) studied the vapor flow in the laminar and turbulent
regimes. The emphasis was placed on studying highly compressible vapor flow situations,
including subsonic and supersonic flow fields with shock waves and flow reversal.
Bowman and Hitchcock solved the full unsteady compressible, Reynolds—averaged
turbulent Navier—Stokes equations in cylindrical coordinates, using the Explicit
MacCormack finite difference method. In their calculations, they had to use very small
time steps in order to avoid numerical instabilities. Bowman and Hitchcock (1988)
experimentally investigated vapor flow dynamics using isothermal air injection and suction
at the walls of a porous pipe made from polyethylene beads. Based on this work, Bowman
(1987) established functional relationships of the friction coefficient for a simple, steady
one—dimensional model for highly compressible and sonic vapor flows.

Researchers at the University of California Los Angeles (Klein and Catton 1987; Issacci et
al. 1988, 1990 and 1991) also studied the heat pipe vapor dynamics, using a two—

dimensional approach. Originally, they solved the two—dimensional, laminar compressible
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Navier-Stokes equations using the SIMPLER algorithm. This method, however, was
limited to low—compressibility flows. Issacci et al. (1991) showed that a centered—
difference scheme, when used with non-linear filtering, yielded a second-order, stable
solution and captured shocks without oscillations. This non-linear filtering technique was
used to analyze the startup vapor dynamics of a sodium heat pipe with a high heat input
flux. The startup transient involved multiple wave reflections from the line of symmetry in
the evaporator section. It is not clear, however, how this code could model free—molecule

and/or transition flow conditions without any special treatment.

Although the vapor flow models of Bowman and Hitchcock (1988) and Issacci et al.
(1988, 1990 and 1991) have provided valuable information on the vapor flow dynamics,
they are of limited use for the design and transient analysis of heat pipes, because of the

thermal and hydrodynamic decouplings of the vapor from the wick region.

Traditionally, the second category regroups heat pipe models that have been developed for
design purposes. These models pay attention to only these phenomena that influence the
performance of heat pipes. The experimental investigations of Ivanovsky et al. (1982) and
Tilton et al. (1986) suggested that during steady—state or slow transients, heat pipe
operation can be described solely by vapor dynamics and energy balance in the various heat
pipe regions. Following these observations, Tilton et al. (1986), Faghri and Chen (1989)
and Cao and Faghri (1990) at Wright State University solved the two—dimensional heat
conduction equations in the wall and liquid—wick regions, which were thermally coupled to

either a one— or two—dimensional vapor flow model.

In their two-dimensional steady-state model, Faghri and Chen (1989) assumed
thermodynamic equilibrium at the L-V interface (the interfacial temperature is equal to the
vapor saturation temperature) and evaluated the evaporation/condensation rates from the
energy balance at the interface. With this model, Faghri and Chen evaluated the effects of
axial conduction, vapor compressibility and viscous dissipation on the operation of water
and sodium heat pipes. Cao and Faghri (1990) extended Faghri and Chen's model to
perform transient calculations. They used the SIMPLE method, and incorporated the effect
of vapor compressibility by treating the vapor pressure as a dependent variable and directly

applying the state equation to obtain the density while iterating.

Jang (1988), Jang et al. (1990a) and Cao and Faghri (1993a, 1993b and 1992) also
modeled the startup of heat pipes from a frozen state. Jang (1988) developed a pure—

conduction transient model for rectangular heat pipe cooled leading edges, and compared its



predictions with Camarda's (1977) experimental results. Evaporation and condensation
rates were evaluated from the kinetic theory to account for the thermal resistance at the L-V
interface. Different startup periods were considered, including free-molecule and
continuum vapor flow conditions. During the first period, Jang (1988) obtained the vapor
temperature by equating the evaporative heat input to the sonic limited heat transport.
When continuum flow is established along the heat pipe, one-dimensional steady
compressible equations were used in the vapor core. Later, Jang et al. (1990a) improved
the model by solving the one—dimensional transient compressible flow equations for the
continuum vapor flow, and developed a model for the frontal startup of circular heat pipes
from a frozen state. The phase change of the working fluid was modeled by using the
fixed—grid heat capacity method. Jang and co—workers used the transition temperature at a
Knudsen number of 0.01 to characterize the axial location of the free—molecule flow front,
and assumed no heat or mass transfers at the boundaries of the rarefied vapor zone.
Unfortunately, these assumptions do not allow the vapor to accumulate progressively in the

heat pipe core, so that the vapor flow would never reach the continuum regime.

Cao and Faghri (1993a) improved the model of Jang et al. (1990a) by using a rarefied self-
diffusion vapor model to simulate the early startup period of high—temperature heat pipes.
After the melting front has reached the vapor—wick interface, evaporation and condensation
rates were calculated using a modification of the kinetic theory of gases. Cao and Faghri
(1993b) extended the model by using a two—region description of the vapor core. The
continuum vapor flow region was modeled using the two—dimensional compressible
Navier-Stokes equations, while the rarefied vapor flow region was simulated by a self-
diffusion model, the two vapor regions being coupled with appropriate boundary
conditions at the axial front defined by the transition temperature. Based on the results of
their model, Cao and Faghri (1992) developed an approximate flat—front analytical solution
for the startup of high—temperature heat pipes, and proposed a frozen—startup operation
limit which indicated the possibility of dryout in the evaporator. This limit was obtained by
comparing the rate of increase of the mass of liquid in the wick (due to axial propagation of
the melting front) with the rate of loss of the working fluid by resolidification of vapor on
the frozen substrate. The two rates were found to be similar for a number of heat pipes,
indicating that resolidification of working fluid is a potential factor for failure of the startup

of high—temperature heat pipes also.

Some of the above models have focused on the modeling of free—-molecule flow regimes in

the vapor and have provided valuable information concerning the startup of high-
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temperature heat pipes. Unfortunately, all of these models treated the wick as a pure
conducting medium, assumed a uniform distribution of the working fluid, and neglected
liquid flow, hydrodynamic coupling between the liquid and vapor phases, and solid—vapor
mass transfers. Therefore, these models are not capable of predicting the operation limits
of the heat pipe, such as capillary, entrainment, dryout of the wick, and the redistribution
of working fluid by sublimation and resolidification during the startup of heat pipes. Tilton
(1987) and Cao and Faghri (1990) recognized that the hydrodynamics of both the liquid

and vapor phases must be modeled in order to predict these operation limits.

Investigators of the third heat pipe model category have included modeling of the liquid

flow and treated the vapor flow as compressible.

In their models, Costello et al. (1988) and Peery and Best (1987) treated the liquid and
vapor flows in the heat pipe as one—dimensional and compressible flow problems, and
evaluated the evaporation and condensation rates at the L-V interface using modified forms
of the kinetic theory relationship. The evaporator end of the heat pipe contained a porous
node to store excess liquid fluid, while the excess liquid in the condenser end was assumed
to exist in slug form. At the condenser end, the liquid pressure in the wick was assumed to
be equal to the vapor pressure in the core. Costello et al. (1988), on contract for Los
Alamos National Laboratory, developed a heat pipe model to predict the transient behavior
of liquid-metal heat pipes during startup from the frozen state and operational shutdowns.
The friction factor was a function of the Knudsen number to simulate free-molecule and
transition flow conditions occurring during startup at low temperature. At each axial
location, the liquid and vapor pressure difference was tested against the maximum capillary
pressure head. If the pressure difference exceeded the capillary pressure, the node was
flagged as being dried out. Although their model is quite comprehensive, Costello and co—
workers did not report any calculation results. It is believed that the temporal discretization
scheme associated with the KACHINA algorithm limited the time step for calculations.
Peery and Best (1987) developed a model to simulate the transient operation of a
rectangular water heat pipe tested at Texas A&M University. Even so Peery and Best used
oversimplifying assumptions, their model suffered from numerical instability, and the
authors could only report calculations of small transients (up to 2 seconds). Extremely
small time steps (10-4 s) were required to solve iteratively for the coupled energy and
kinetic theory equations. This constraint on the time step was previously reported by
Subbotin when using his model for predicting evaporation / condensation rates. In

conclusion, Costello et al. and Peery and Best did not succeed. The numerical instabilities
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encountered by these authors are attributed to the numerical methods they used, which were
not suitable to handle the complexity of the problem, particularly the coupling with the
kinetic theory relationship.

Later, Faghri and Buchko (1991) extended the capability of their two—dimensional steady-
state model (Faghri and Chen 1989) by including the effect of liquid flow in the wick.
They used the steady Darcy—extended flow equations for a saturated and isotropic porous

medium, but computed the pressure profiles along the heat pipe independently.

Unfortunately, all the investigators mentioned above ignored the hydrodynamic coupling at
the L-V interface. Such decoupling of the liquid and vapor momentum equations can result
in erroneous liquid and vapor flow rates and pressures. This uncertainty is attributed to the
fact that neither of these models satisfy the local interfacial force balance at the L-V
interface. As pointed out by Hall and Doster (1989), it is necessary to accurately model the
capillary phenomena along the entire length of the heat pipe and thus, adequately satisfy the
local capillary relationship of Pascal. Setting the liquid and vapor pressures equal at an
assumed axial location and computing the phasic pressure distributions independently does
not allow the capillary pressure difference to adjust to system parameters. Consequently,
models using this approach could not accurately calculate the vapor and liquid flow rates
and pressures during a transient, and were not capable of predicting the capillary and

dryout operation limits.

The fourth category regroups the heat pipe models that use a geometric approach for
modeling the radius of curvature of the liquid meniscus. Ransom and Chow (1987), Hall
and co—workers (1988-1994) and Seo and El-Genk (1989) incorporated liquid flow and
thermal expansion, hydrodynamically coupled the liquid and vapor phases, and predicted
the vapor volume distribution in the wick. They used the capillary relationship of Pascal to
relate the phasic pressures. The pore radius, R), is fixed by the geometry of the wick, and
the radius of curvature of the liquid meniscus at the L-V interface, R, is related to the
amount of vapor in the wick. The maximum pressure difference occurs when R, is equal
to the pore radius; in this case, the volume of vapor in the wick forms a hemisphere of
radius R, in each pore of the wick surface. These geometrical considerations allow to
express the vapor void fraction in the wick in terms of R, the wick surface porosity, and
the diameter of the vapor core.
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The Advanced Thermal Hydraulic Energy Network Analyser (ATHENA) heat pipe model
of Ransom and Chow (1987) is a modification of the reactor transient code RELAP-5 (a
general purpose thermal hydraulic transient simulation code for two-fluid, two—phase
stratified flow systems). In this model, the two—fluid heat pipe formulation is obtained
from the one—dimensional area—averaged phasic momentum equations by retaining distinct
phasic pressures. Results reported by Ransom and Chow suggest the soundness of their
model and the stability of the iterative semi—implicit numerical scheme used. However, to
minimize the number of changes to the original solution scheme of RELAP-5, the phasic
pressure difference was evaluated explicitly, which led to severe time step restrictions,
much less than the Courant-Friedrichs-Lewy (CFL) limit, and resulted in large
computational time for each run. The authors pointed out that in the case of liquid
flooding, the diphasic interface is flat and the pressure difference between the phases is
equal to zero, while this pressure difference is equal to a maximum corresponding to R, =
R, when the vapor volume fraction exceeds the volume of a hemisphere of radius R times
the number of pores available at the surface of the wick. These specifications define the
variation of the interphase pressure difference in terms of the vapor volume fraction in the
heat pipe. However, only the relationship corresponding to normal conditions was

considered in the model, so that wick flooding or dryout conditions were not modeled.

Hall (1988) and Hall and co-workers (1990-1994) developed the THROHPUT (Thermal
Hydraulic Response Of Heat Pipes Under Transients) code to model the transient behavior
of a circular lithium heat pipe during startup from a frozen state and operational shutdowns.
Their model predicted the solid, liquid and vapor volume fractions along the heat pipe, so
that liquid pooling and recess were modeled. The THROHPUT code predicts the
evaporation, condensation and resolidification rates using the kinetic theory equation
proposed by Collier (1981). However, the two—dimensional conservation equations were
averaged over the radial direction, yielding a one—dimensional axial model. The important
radial effects and interphase transfer terms were treated in separate lumped submodels.
Melting and freezing processes were modeled with a discontinuous heat flux at the liquid—
solid boundaries. Hall and co-workers assumed that the phases existed in radial layers in
order to simplify the radial submodel. Four specific configurations were considered: cold
state (all solid), startup or melting (wall-liquid-solid), normal operation (all liquid), and
shutdown or freezing (wall-solid-liquid). The governing equations were discretized on a
staggered grid and linearized using an implicit Taylor series expansion about the old time
step. Because the model of Hall is basically one—dimensional, it was possible to solve the

linearized coupled finite-difference equations directly, using specialized block—diagonal
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matrix inversion methods. Hall and Doster (1988) attempted to simulate a Los Alamos
experiment (Merrigan et al. 1986) of the frozen startup of a 4 m-long lithium heat pipe. In
order to simulate the first 50 seconds of the thaw transient the authors needed 5 hours of
CPU time on a VAX 11/750. In further developments, Hall and Doster (1989, 1990) used
the Dusty Gas Model of Cunningham and Williams to treat free-molecule and transition
flow regimes as well as continuum flow regime in the vapor core. Also, they incorporated
an axial melt front submodel in THROHPUT. Hall (1988) and Hall and Doster (1989,
1990) showed that using multiple passes (updating the Jacobian at each pass) to update the
highly nonlinear equations (particularly the gas mixture state equation and the capillary
pressure relationship) reduced the linearization errors, which had limited the time step size.
With this new numerical approach, a 2-hour—long transient was simulated using
approximately 24 hours of CPU time on a VAX 8600.

In some stages of the THROHPUT calculations, it was found that there was not enough
total vapor pressure to support the capillary pressure difference. In early versions of the
code, this was viewed as a shortcoming, and Hall forced the liquid pressure equal to zero
to prevent any negative liquid pressure in the wick. However, when adjacent liquid nodes
showed the same condition, there was no pressure difference between them, resulting in no
axial liquid flow. To remedy this problem, Hall and Doster (1989, 1990) assumed that
some of the capillary pressure was directed axially when there was a difference in liquid
volume fraction between two nodes. This treatment caused their model to predict dryout of
the evaporator when this did not occur experimentally for the same conditions. In an
attempt to resolve this problem and reproduce the experimental results, Hall and co-
workers (Hall 1988; and Hall and Doster 1990) varied the values of the evaporation and
condensation accommodation coefficients used in the calculation. The code could satisfy
each of several experimental criteria separately by adjusting these coefficients, but no pair
of coefficients could meet all of the requirements simultaneously. In a recent paper, Hall et
al. (1994) performed in-depth literature reviews of experimental measurements of
evaporation / condensation accommodation coefficients and of the possibility of tension in
the liquid phase. They found that values of the accommodation coefficients close to unity
could be measured for both liquid—metal and non-liquid metal working fluids when care
was taken in the experiments to avoid surface contamination, the presence of non-
condensable gas, and other forms of experimental errors. Furthermore, Hall et al. (1994)
found several references which described the effect of tension in the liquid (that is, the
possibility of negative liquid pressure) and validated its physical existence. In the later
version of the THROHPUT code, Hall et al. (1994) allowed negative liquid pressure in the
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wick and used unity accommodation coefficients to calculate the evaporation, condensation
and resolidification rates. With these modifications, the model results were greatly
improved and agreed reasonably well with the experimental data of Merigan et al. (1986)

for the frozen startup of a lithium heat pipe.

Seo and El-Genk (1989) at the University of New Mexico developed a transient model for
simulating the operation of fully—thawed liquid-metal heat pipes. They assumed the liquid
flow in the wick region to be two—dimensional, transient, incompressible and laminar.
However, a quasi-steady state, compressible one-dimensional approximation was used to
simulate the vapor flow. Seo and El-Genk used the laminar two—dimensional Navier—
Stokes equations and retained only these terms that could be discretized using the axial
variables of the vapor. While the authors recognized the limitations of such an approach,
their goal was to design a fast running heat pipe code for incorporation in the Space
Nuclear Power System Analysis Model (SNPSAM), of SP-100 space nuclear power
system (Seo 1988). Seo and El-Genk used the geometric Pascal relationship to explicitly
satisfy the interfacial local force balance, and the capillary limit was detected when the
effective radius of curvature of the liquid meniscus in the wick became equal to the
geometrical pore radius. The equations were discretized implicitly using a conventional
finite difference method, and an iterative solution scheme was used to resolve the interfacial
couplings. To verify the model predictions, results were compared with the experimental
data of Merrigan et al. (1986) for a 4 m-long cylindrical lithium heat pipe. During normal
operation, a high—frequency RF coil heated the evaporator section, while the condenser
section was cooled radiatively. After shutdown, both the evaporator and condenser
sections were radiatively cooled. The model prediction of the wall temperature distribution
after shutdown before the working fluid reached its freezing point agreed well with the
experimental results, except at the end of the condenser region. It was found
experimentally that during normal operation, excess working fluid pooled into the vapor
core and filled approximately the last S0 cm of the condenser, causing higher measured
temperatures at this end of the heat pipe. It is not clear how pooling effects were treated in
the model.

Although Ransom and Chow (1987) and Seo and El-Genk (1989) incorporated the effects
of liquid flow, interfacial hydrodynamic coupling and thermal expansion, their models
lacked the capability of predicting liquid pooling at the end of the condenser. Also, these
investigators did not model the phase—change of working fluid in the wick during the

startup from a frozen state, nor the free-molecule and transition vapor flow regimes.
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THROHPUT (Hall and co-workers 1988-1994) is one of the most comprehensive heat
pipe models to date. It is the only model with provisions for predicting liquid recess,
partial dryout and resaturation of wick, and pooling of excess liquid in the vapor core.
However, THROHPUT has certain drawbacks. Because this model is basically one-
dimensional, it does not deal with freezing and melting of the working fluid
mechanistically, hence, its predictions during startup and shutdown transients are only
approximate. Furthermore, because heat transfer through the metallic matrix of the wick
was not modeled separately, THROHPUT cannot be used to predict the startup of low—

temperature heat pipes from a frozen state.

In conclusion, to the best of our knowledge, there has not been a detailed, accurate and
efficient transient analysis model for the startup of heat pipes from a frozen state. Some of
the processes characteristics of the startup of heat pipes from a frozen state, such as the
redistribution of working fluid by sublimation and resolidification, liquid flow and liquid
recess in the wick, partial dryout and resaturation of wick, and pooling of excess liquid,
have not been considered or been seriously investigated by the scientific community.
Furthermore, due to the complexity and nonlinearity of the thaw process of a heat pipe, an
analytical solution is unattainable and the numerical solution could be rather involved and
CPU time consuming. For example, Jang et al. (1990a) modeled the phase—change of the
working fluid using the fixed—grid heat capacity method. Because this method is only
applicable to a special case of the general form of the energy equation, it is prone to
numerical instabilities and inaccurately calculates the melting front location and the
temperature profiles in the solid and liquid regions. Cao and Faghri (1993a, 1993b) used a
fixed—grid temperature transforming method to predict the freezing and melting of working
fluid in the wick (Cao and Faghri 1990b). Their numerical scheme, however, required
strong under—relaxation of the temperature and a large computation time when the mushy
cell temperature range (6T) was small. Also, because of the sharp thermal conductivity

jump at the liquid—solid interface, their model predicted wiggly temperature time histories.

1.2. OBJECTIVES

The objectives of this work are to develop and validate a two—dimensional, transient heat
pipe model, and to devise a stable and efficient solution technique for simulating the
transient operation of liquid—metal and non-liquid metal heat pipes. The model must be
capable of simulating the startup of wick—type heat pipes from fully—thawed or frozen

conditions. The heat pipe wick could be an annular wire—screened mesh, or an isotropic
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porous medium such as a powder or a bed of spheres. In addition to simulating the melting
and/or freezing processes of the working fluid, the model must include liquid flow in the
porous wick and hydrodynamic coupling of the liquid and vapor phases in order to predict
the operation limits of the heat pipe, such as capillary limit and liquid recess (dryout) in the
evaporator wick, and the pooling of excess liquid in the vapor core. Of special interest is to
quantify the importance of sublimation and resolidification processes during the startup of
low—temperature heat pipes from a frozen state. These processes can cause significant
redistribution of the working fluid in the wick and the occurrence of early dryout of the

evaporator wick.

Because of the physical complexity of the problem, an advanced numerical method is
required. Another objective of this work is to develop a stable, accurate and efficient
solution technique in terms of computation time. Also, efficient linear-system solvers must
be devised to solve the five—point linear equations resulting from the discretization of the
energy, mass and momentum balance equations. These solvers must be optimized in terms

of computation time and memory storage requirement.

The last (but not least) objective is to verify the soundness and accuracy of the physical and
numerical schemes using available analytical and experimental data. Of particular
importance are the validations of the freeze—and-thaw model and of the modeling of heat
and mass transfers in the porous wick. Finally, the heat pipe model will be validated using
transient experimental data of a fully—thawed water heat pipe constructed at the Institute for
Space and Nuclear Power Studies (El-Genk and Huang 1993).

The statement of objectives is followed by a quick description of the following chapters.

The physical models and the governing equations of the problem in HPTAM are described
in Chapter 3. HPTAM can handle both rectangular (symmetric and non-symmetric slabs)
and cylindrical geometries. The model divides the heat pipe into three transverse regions:
wall, liquid/wick, and vapor regions, and solves the complete form of governing equations
in these regions, together with the mass, momentum (capillary relationship of Pascal) and
energy jump conditions at the liquid-vapor (L-V) interface. The calculated quantities are
the wall temperature, temperatures in the solid, liquid and vapor phases, pressures and
mass fluxes in the liquid and vapor phases, the radius of curvature of the liquid meniscus at
the L~V interface, and the radial location of the working fluid level (liquid or solid) in the
wick. To predict the flow of liquid in the porous wick of the heat pipe, HPTAM uses the

17



Brinkman-Forchheimer—extended Darcy flow model (Section 3.1), while the volume-
averaged homogeneous enthalpy model is used to model the heat transfer. Evaporation,
condensation, sublimation and resolidification rates are calculated in terms of interfacial
pressures and temperatures from the kinetic theory relationship with an accommodation
coefficient of unity. HPTAM incorporates several working fluids such as lithium, sodium,
potassium and water, as well as various wall materials (tungsten, niobium, zirconium,

stainless—steel and copper).

The model handles the phase—change of working fluid in the wick using a modified fixed—
grid homogeneous enthalpy method, as described in Section 3.2. The technique employs a
mushy—cell temperature range as small as 2x10-8 K (limited by machine accuracy only),
without requiring under-relaxation of the temperatures and generating numerical
instabilities. The simple method, based on the frozen fraction, developed to calculate the
heat fluxes at the boundaries of the mushy cell, improves accuracy and reduces oscillations
in temperature time histories by one—to—two orders of magnitude. Section 3.3 describes
the liquid pooling submodel, which simulates accumulation of the excess liquid in the
vapor core at the condenser end due to thermal expansion of the liquid during heatup.

When modeling the transient operation of low—temperature heat pipes, the vapor is always
in the continuum flow regime. In such case, HPTAM solves the two—dimensional Navier—
Stokes flow equations in the vapor and obtains the vapor temperature from the saturation
state. However, when dealing with high—temperature heat pipes operating at low
temperatures, free—molecule and transition vapor flow regimes may occur in the heat pipe.
Therefore, HPTAM uses the 1-D Dusty Gas Model in the vapor to model the transient
“operation of liquid-metal heat pipes (Section 3.4).

Because of the physical complexity of the problem, advanced numerical methods are
required. Chapter 4 compares several different segregated solution techniques, one based
on the non-iterative Pressure Implicit Splitting Operator (PISO) of Issa (1986), another of
the SIMPLEC segregated iterative type, in terms of their effectiveness in reducing the CPU
time while maintaining the accuracy of results. Also, various linear—system solvers are

tested to determine which one is most efficient.
The development of this comprehensive model has been guided by continuous

benchmarking of the model predictions with available experimental and numerical results.

The accuracy of the physical and numerical schemes for modeling heat and mass transfers
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in the wick is checked in Chapter 5, using various benchmark problems, namely the
problems of natural convection of liquid in a square cavity (Section 5.1), natural convection
of molten gallium in a porous bed of glass beads (Section 5.2), the one—-dimensional pure
conduction solidification problem (Section 5.3), the two—dimensional pure conduction
problem of freezing in a corner (Section 5.4), and the freezing of tin in a rectangular cavity

in the presence of natural convection (Section 5.5).

Numerical results of the frozen startup of a radiatively—cooled water heat pipe are presented
in Chapter 6. These results demonstrate the soudness of the physical model and numerical
approach used in HPTAM, and illustrate the effects of resolidification and sublimation, and
combined phase—change and liquid hydrodynamics in the wick on the startup of low—

temperature heat pipes.

In Chapter 7, the heat pipe model is validated using transient experimental data of a fully—
thawed water heat pipe constructed at the Institute for Space and Nuclear Power Studies
(EI-Genk and Huang 1993). Results illustrate the effect of the hydrodynamic coupling of
the vapor and liquid phases and the appearance during the heatup transient (disappearance
during cooldown) of a pool of excess liquid at the condenser end. The effects of input
power and initial liquid inventory on the location of the wet point and liquid pooling
effects, and on the vapor and liquid pressure and temperature distributions are illustrated in
Chapter 8.

Chapter 9 presents steady—state results of a lithium heat pipe operating at a temperature
level of 1250 K and a power throughput of 6.5 kWt. Results show that high evaporation
and condensation rates can generate significant recovery of vapor pressure and non—

negligible viscous dissipation rates in the vapor space.

Finally, summary and conclusions of this study are presented in Chapter 10, along with

some recommendations for future numerical and experimental work (Chapter 11).

The next chapter reviews important background information on the startup of heat pipes
from a frozen state, the transient operation of fully—thawed heat pipes and operation limits,
and discusses in detail the previous heat pipe modeling efforts and related experimental

work.
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2. BACKGROUND

Heat pipes are highly reliable and efficient energy transport devices. They have no moving
parts and can operate passively under vacuum and zero—gravity environments. Heat pipes
can transport relatively large amounts of thermal energy over a significant distance with a
small temperature drop between the heat source and the heat sink. Energy transport is
achieved by means of the evaporation of a liquid working fluid at the heat source
(evaporator section) and condensation of the vapor produced at the heat sink (condenser
section). Capillary forces developed in a porous structure (or wick) return the liquid

condensate back to the evaporator section.

Thermosyphons are the ancestor of heat pipes and have been used for the first time by
Perkins in 1897. They are wickless heat pipes which rely on gravitational pull to return the
liquid from the condenser to the evaporator. In 1942 Gaugler invented a heat pipe that
worked in a similar manner to Perkin's device, but with a wick structure. In 1963, Grover
and co—workers at the Los Alamos Scientific Laboratory began serious research on heat

pipes. Since 1963, research on heat pipes has grown steadily all over the world.

The next section describes the principle of heat pipe operation in more details.
Considerations for selection of the working fluid for a given temperature range of operation
are given, based on the fluid properties and operation limits of the heat pipe. Section 2.2
describes the startup from a frozen state of low—temperature and high—temperature heat
pipes. Finally, Sections 2.3 and 2.4 review in details the previous heat pipe modeling and

experimental efforts.
2.1. PRINCIPLE OF HEAT PIPE OPERATION AND LIMITS

Figure 2.1 shows a schematic of a conventional circular heat pipe. The heat pipe consists
of a metallic pipe or tube, which serves as a container, closed at both ends. The liquid
phase of the working fluid is confined to a thin capillary structure, a homogeneous porous
medium or a wire-screened wick. The center of the pipe is occupied by the vapor phase of
the working fluid. The heated portion of the heat pipe is called the "evaporator,” and the
cooled section, usually located at the opposite end of the heat pipe, is called the

“condenser”. The evaporator and condenser can be separated by a thermally insulated
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FIGURE 2.1. Ilustration and Principle of Operation of a Conventional Heat Pipe.

("adiabatic") section. Heat added to the evaporator section is conducted radially through
the pipe wall and the wick, and evaporates the liquid. The vapor pressure in the evaporator
of the heat pipe is higher than that in the condenser, forcing the vapor to flow from the
evaporator to the condenser, where it condenses. The liquid condensate returns to the
evaporator by capillary effect. The radius of curvature of the liquid meniscus in the wick
structure of the evaporator is lower than that in the condenser. This difference in these radii
creates the capillary force that returns the liquid from the condenser to the evaporator

through the wick structure.

Heat pipes can operate over a broad range of temperatures, by selecting appropriate
working fluids. The best choices of wick geometry and working fluid are that which
maximize the various operation limits of the heat pipe over the temperature range of
interest, and minimize the mass of the system. This last criteria is of particular importance
for space applications, because of today's prohibitive launch cost of space systems per unit
of mass. The heat pipe operation limits are: the viscous limit, the sonic limit, the capillary

limit, the entrainment limit, and the boiling limit. These limits are illustrated in Figure 2.2.
The viscous limit arises at low temperature with working fluids of very low vapor

pressure. Such fluids are usually frozen at room temperature, for example lithium and

sodium. The viscous limit occurs when the vapor pressure of the working fluid is too low
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to counter the pressure losses in the vapor along the heat pipe. The sonic limit arises when
the vapor velocity reaches the sonic velocity at the exit of the evaporator section. In such
case, the maximum (sonic limited) power throughput transported by the vapor is
proportional to the vapor cross-sectional flow area and to the vapor pressure of the fluid,
and is inversely proportional to the square root of the vapor temperature. When the vapor
flow is maximum, or choked, changes in the condenser heat rejection rate cannot be
transmitted upstream to the evaporator section. This means that further reduction in the
condenser temperature or pressure will not increase the vapor flow rate, but will cause the
vapor velocity to become supersonic in the condenser section, often exhibiting pressure
recovery in the form of a shock front. Therefore, sonic limited heat pipes are characterized

by very large axial temperature gradients.

entrainment
limit

5
=
2 N
o
£ wicking or
= capillary limit
= boiling
o limit
Q

viscous

limit
-
heat pipe temperature
FIGURE 2.2. Operation Limits of a Heat Pipe.
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Clearly, both the viscous and sonic limits are strong increasing functions of the vapor
temperature, and can be enhanced by increasing the vapor flow area or reducing the vapor
velocity. Therefore, an adequate working fluid is one which has a suitable vapor pressure
level over the operation temperature range of interest. Too low a vapor pressure would
cause the heat pipe to be viscous or sonic limited. Figure 2.3 shows the vapor pressure of
a number of working fluids as a function of temperature. In the 800 K-1000 K
temperature range, for example, the vapor pressure of potassium varies between 7 and 80
kPa, while that of sodium ranges between 1 and 18 kPa; the vapor pressure of lithium is
below 100 Pa in this temperature range. While the choice of potassium will result in a 20
kWt sonic limit in a pipe with a diameter of 3 cm, the sonic limit for sodium will be 4 kWt
while that for lithium will be as low as 400 Wt (at the lower end of the temperature range,
800 K).

When selecting the working fluid, care must also be taken that the vapor pressure of the
fluid is not too high (that is, less than a few bars). Too high a vapor pressure would cause
the heat pipe to be limited by the boiling limit in the wick, or to be blocked by the approach
of the critical point, and could cause mechanical rupture of the heat pipe container. In the
800 K-~1000 K temperature range, the vapor pressure of potassium and sodium is less than
1 bar (105 Pa), and boiling limit and mechanical resistance of the container are not a
concern at this low pressure level. As an illustration, a 0.3-mm thick nickel tube of radius

2 cm could withstand a radial pressure differential of 10 bars.

The capillary (or wicking) operation limit of the heat pipe arises when the maximum
capillary pressure capability of the porous wick cannot overcome the combined liquid and
vapor pressure losses along the heat pipe. The capillary pressure head is proportional to
the surface tension of the liquid and inversely proportional to the minimum radius of
curvature of the liquid meniscus in the wick. The maximum capillary pressure head arises
when the radius of curvature of the liquid meniscus equals the effective pore size of the
wick structure. To pursue the selection of working fluid further, one can use the figure of
merit. The latter is defined as the product of surface tension, liquid density and latent heat
of vaporization, divided by the dynamic viscosity of the liquid phase, and is shown in
Figure 2.4 as a function of temperature for several working fluids. Clearly, it is preferable
to use the working fluid which exhibits the highest figure of merit. The higher the liquid
transport capability (the product of liquid density and latent heat of vaporization) the slower
the liquid flow in the wick, the lower the liquid viscosity the smaller the liquid pressure
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losses. Finally, the higher the surface tension of the liquid the larger the capillary
pressurehead, and all these factors contribute to a larger capillary operation limit. In the
800 K to 1000 K temperature range, for example, potassium and sodium working fluids
are much preferable than cesium. As shown in Figure 2.4, cesium has a much lower figure
of merit than sodium and potassium. Also, the vapor pressure of cesium is larger, which

leads to a lower boiling limit.

Note that the figure of merit chart must be used carefully. While it combines several
desirable properties which characterize the liquid transport capability and the capillary limit,
it does not provide any information concerning the viscous and sonic operation limits of the
heat pipe. For example, sodium has a figure of merit as much as twice that of potassium,
while the figure of merit of lithium beats that of sodium by one order of magnitude. This is
because lithium working fluid has very high latent heat of vaporization and surface tension.
However, sodium and potassium are preferred working fluids in the temperature range of
800 K-1000 K, because of their much larger vapor pressures than lithium at these
temperatures. The fact that lithium has such a high figure of merit makes it the best choice
of working fluids at higher temperatures (1100 K-1700 K), where its vapor pressure is
higher. Above 1700 K, silver would be preferable, as apparent in Figures 2.3 and 2.4.

The last operation limit of the heat pipe is the entrainment limit. This limit arises when the
shear stress exerted by the vapor at the liquid—vapor interface in the wick overcomes the
liquid surface tension forces. As aresult, the vapor carries away liquid droplets back to the
condenser, thus preventing the liquid from replenishing the evaporator wick. Entrainment
arises in the presence of very high and supersonic vapor velocities which occur usually in
sonic limited heat pipes, and depends strongly on the geometry of the separative interface
between the liquid and vapor phases.

There exists a number of heat pipe wick geometries, and only the most popular are
reviewed in this section. The most common type of wick is the homogeneous wick, which
is made of a wrapped wire—screened mesh or a ceramic or metallic powder. Heat pipes
with homogeneous wicks are easily constructed. The main limitation of such wicks is to
introduce large liquid pressure losses, as the liquid must flow through a tight low—porosity
structure. The capillary limit can be enhanced by increasing the capillary pressure
capability of the wick. This is achieved by reducing the effective pore size of the wick

structure, till an optimum value of the capillary limit is reached, due to the associated
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decrease in the wick permeability (that is, increased liquid flow resistance through the
wick). A possible solution to this geometrical limitation is to increase the effective liquid

flow cross—sectional area by adding longitudinal grooves in the pipe wall.

Pipe—grooving is the only manufacturing technique characterized by a high mass—
production at low cost. In the case of a simple grooved heat pipe, performance is quite
sensitive to the groove geometry. Grooves must be deep enough to insure suitable liquid
flow rates, but narrow to provide sufficient capillary driving forces. The entrainment limit
is usually low because of the direct contact between the liquid and vapor phases. The
performance of the heat pipe can be enhanced by covering the grooves with a metallic wire—

screened wick structure.

The combination of grooves and screen wick resolves the limitations associated with both
wick designs considered separately. The existence of grooves significantly reduces the
liquid pressure losses associated with the homogeneous wick design, while the presence of
the screen wick considerably enhances the poor capillary driving force and low entrainment
limit characteristics of the bare grooved heat pipe. In such a configuration, the role of the
grooves is essentially to reduce the liquid pressure losses by increasing the liquid flow
cross—sectional area. This area is maximized when the longitudinal grooves are connected
together, which results in a small annular spacing between the pipe container and the wick
structure. However, this solution is only applicable to heat pipes which utilize liquid—metal
working fluids. Non-liquid metal fluids have too low a thermal conductivity and nucleate

boiling may develop in the annular spacing, blocking the operation of heat pipe.

Another important configuration is that of heat pipes using arteries in the vapor space.
While the use of arteries greatly increases the complexity of the design and the fabrication
cost, it has the potential of offering very high performances. The function of the artery,
which has become a popular feature of heat pipes considered for space applications, is to
provide a low pressure—drop path for circulating the liquid from the condenser to the
evaporator section, where it is redistributed in a thin layer through the circumferential wick.
This last characteristic has the additional effect of enhancing the boiling limit. Also
entrainment effects are reduced because of the partial separation of liquid and vapor flows.
However, arteries may fail to operate when filled with vapor, a phenomena referred to as
depriming. To remedy this problem, several arteries (3 to 4) are usually introduced in the

heat pipe for redundancy, reducing the vapor flow cross—sectional area and increasing the
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vapor velocity. This has the detrimental effect of reducing the sonic limit, as well as the

entrainment limit in some cases.

After the working fluid and wick geometry have been selected for the application of
interest, the structural material for the container and the wick structure must be chosen.
The role of the container is to isolate the working fluid from the environment and maintain
the pressure differential across the wall. The material selected for the wick should have
preferably high thermal conductivity and strength—to—weight ratio in order to minimize the
radial thermal resistance and mass of the system. Also, the wick material must have good
compatibility and wettability properties with the working fluid, and should be easy and
cheap to fabricate. Compatibility is an important issue in heat pipes design, since no
chemical reaction can be tolerated between the working fluid and the structural material of
the heat pipe. This is particularly important considering that the working fluid in a heat
pipe is in a diphasic form and always very pure, an environment which greatly enhances
corrosion reactions. Non-—condensable gases which may be generated, even in small
quantity, could significantly reduce the heat pipe performance, and possibly lead to its

complete blockage.

The performance of a heat pipe depends not only on the type of wick and working fluid
used, but also to a great extent on the thermal external conditions imposed upon it,
particularly during the startup. When the capillary limit, the entrainment limit, or the
boiling limit is encountered, the wick structure in the evaporator dries out, leading to
operation failure of the heat pipe. In addition to these limitations, startup difficulties may

occur at low temperature when the heat pipe working fluid is frozen.
2.2. STARTUP OF HEAT PIPES FROM A FROZEN STATE

The startup of high—temperature (liquid-metal) heat pipes from a frozen state differs
significantly from that of low—temperature heat pipes, due to differences in the vapor
pressure of the working fluid near the melting point. In low—temperature heat pipes, the
vapor pressure is large enough to avoid the viscous and sonic limits and allow significant
migration of the working fluid to colder regions in the heat pipe. Once the solid working
fluid is melted in the evaporator, dryout may occur due to immediate vaporization of the
fluid.
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The startup process of a low—temperature heat pipe may be divided into several successive
steps (Figure 2.5). Initially, the working fluid in the wick is frozen. As thermal power is
applied to the evaporator section, the frozen working fluid sublimates and transports as a
continuum flow to the condenser where it resolidifies (Figure 2.5a). This sublimation /
resolidification process depletes the frozen working fluid in the evaporator and accumulates
it in the condenser (Figure 2.5b). As the wall temperature continues to increase, the
working fluid at the evaporator wall begins to melt (Figure 2.5c). The melting front
progresses radially and axially with time. As the melting front reaches the liquid—vapor
(L-V) interface (Figure 2.5d), the following processes take place:

(a) evaporation depletes working fluid in the evaporator and could cause the wick to
dryout. In cases where the density of the working fluid decreases upon melting, potential
dryout of the wick decreases, and vice versa.

(b) a thin liquid film of vapor condensate forms on a frozen substrate in the condenser.

The drainage of the film back to the evaporator, which is governed by the capillary effect
and frictional drag at the film—solid interface, could prevent or postpone dryout
(Figure 2.5d).

In addition to the two—dimensional progression of the melt front toward the condenser,
melting may also occur in the condenser and adiabatic sections at the liquid film/solid
interface and proceeds radially outward. Eventually, the heat pipe becomes fully—thawed
and liquid circulation in the wick is established (Figure 2.5e).

Because of the relatively high vapor pressure of low—temperature working fluids, even
near the melting temperature, choked and/or supersonic vapor flows are not encountered
during the startup.

In the case of high—temperature working fluids, however, the vapor flow in the heat pipe
remains in the free-molecule and transition vapor flow regimes for temperatures well above
the melting temperature. This has the beneficial effects of limiting migration of the solid
working fluid to the condenser (by sublimation and resolidification), and allowing for
melting the working fluid by conduction heat transfer before large scale evaporation of the
liquid occurs. However, the startup of high-temperature heat pipes generally involves very
high vapor velocities. In most cases, the sonic limit is reached and supersonic velocities
exist along the condenser, which could cause entrainment of liquid droplets and prevent the

liquid from returning to the evaporator. A typical liquid—-metal heat pipe has a
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sonic limit of several kilowatts at high operating temperature, but of only a fraction of a
watt at room temperature. Therefore, the heat pipe operation must pass through a region of

very low heat transfer rates (to the condenser) during the startup.

One way of achieving a successful startup of high—temperature heat pipes would be to
subject the evaporator to a very small input power, progressively increased as the
temperature of the heat pipe rises, to avoid reaching the viscous or sonic limit at any time.
However, such startup scenario would probably take several hours (if not days) before the
operating temperature would be reached. In fact, the startup of heat pipes from a frozen
state is primarily a function of the heat rejection rate at the condenser. The rejection rate
must be low enough to enable the heat transferred by the vapor to melt the working fluid in
the condenser section, and to allow the liquid to return to the evaporator before the wick is
depleted of working fluid.

Three types of startup failures of high—temperature heat pipes have been observed
experimentally (Deverall et al. 1970), all related to the sonic limit. When the temperature is
low and the condenser heat rejection rate is high, very low vapor densities in the heat pipe
result in choked vapor flow and limited heat transfer to the condenser section. The first
type of startup failure occurs when relatively high heat rejection rates are applied to the
condenser. In this case, the limited heat transfer rate is not sufficient to raise the condenser
temperature above the fusion temperature of the working fluid, and the vapor freezes out in
the condenser wick. The evaporator eventually dries out, since the working fluid cannot
return from the frozen condenser. Dryout of the evaporator wick is followed by a local rise
in temperature which eventually damages the heat pipe.

The second type of startup failure of high—temperature heat pipes occurs at moderate
condenser heat rejection rates. Further increases in the evaporator input power or
temperature cannot raise the temperature of the condenser (due to the sonic limited heat
transfer rate), but generate very high (supersonic) vapor velocities along the condenser,
which eventually sweep the liquid out of the wick structure (entrainment limit) and cause
dryout of the evaporator wick. When the entrainment limit occurs, it is often possible to
hear the impingement of liquid droplets on the condenser end cap.

The third type of startup failure arises when moderate heat input and rejection rates are

applied to the evaporator and condenser, simultaneously. The low temperature level and

moderate heat rejection rate at the condenser result in choked vapor flow. Due to the
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limited heat transfer rate, the condenser temperature does not rise, and the vapor pressure
remains negligible in that section. A moderate heat input to the evaporator causes the
evaporator temperature to rise rapidly, since the heat transfer rate to the condenser is limited
by the sonic flow. Eventually the vapor pressure in the evaporator becomes so large that
the capillary pumping capability of the wick cannot overcome the pressure losses along the
heat pipe, and the flow of liquid returning to the evaporator is not sufficient to prevent

dryout of the wick.

Despite the aforementioned difficulties, successful startup of high—temperature heat pipes
can be achieved, even when the heat transfer rate to the condenser is choked (sonic
limited). If the heat rejection rate at the condenser is low enough, as in the case of a
radiative condition for example, the condenser can heat up gradually, with a corresponding
increase in vapor density and decrease in the vapor velocity at the evaporator exit, before

the entrainment or capillary limit could occur.

This concludes the background information on the startup of heat pipes from a frozen state.
The next section gives a detailed account of previous heat pipe modeling efforts reported in

the literature.
2.3. LITERATURE REVIEW ON HEAT PIPE MODELING

Because heat pipes are highly reliable and efficient energy transport devices, they have been
considered for many terrestrial and space thermal management applications. Such wide
interest in heat pipes has stimulated the development of numerous steady—state and transient
models. Because the transient operation of heat pipes and the startup of heat pipes from a
frozen state involve several highly non-linear and tightly coupled heat and mass transfer
processes in the vapor, wick and wall regions, mathematical modeling of these problems is
quite complex. To the best of the authors knowledge, no complete treatment of the
processes taking place and described earlier (Section 2.2) has been reported. An analytical
solution is unattainable, and except when simplifying assumptions are made, the numerical
solution could be tedious and require large computation time. This section reviews the
previous and major heat pipe modeling efforts in details. These models included a variety
of simplifying assumptions in the governing equations, and a spectrum of numerical
techniques to solve these equations (Table 1.1). A literature review of heat pipe models
developed prior to the year 1988 can be found in the Ph.D. Thesis of Hall (1988), Jang
(1988) and Seo (1988).
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Heat pipe models can be classified into four categories:

(a) models which simulate the vapor flow region only;

(b) models which simulate vapor, wick and wall regions but ignore the liquid flow in
the wick and the momentum coupling at the liquid—vapor (L.-V) interface;

(¢) liquid/vapor counter—current flow models which neglect the momentum coupling at
the L-V interface; and

(d) models which have the capability to predict the radius of curvature of the liquid
meniscus at the L-V interface in order to insure proper hydrodynamic coupling of the liquid
and vapor phases.

Only a few models, however, attempted to simulate the non—continuum vapor flow regimes
occurring in high—temperature heat pipes operating in the low temperature range, and the
change of phase of the working fluid in the wick during the startup of heat pipes from a
frozen state.

The next subsections describe the heat pipe models of the first group, which have focused
on the heat pipe vapor dynamics. In an attempt to describe the operation of heat pipe,
Bowman (1987), Bowman and Hitchcock (1988), Klein and Catton (1987) and Issacci et
al. (1988, 1990 and 1991) have developed two-dimensional transient models of vapor
flow, which decoupled the vapor from the liquid-wick and wall regions, except for a
simplified interfacial energy balance.

2.3.1. Vapor Model of Bowman et al. (1987-1988)

Bowman and Hitchcock (1988) studied the vapor flow in the laminar and turbulent
regimes. The emphasis was placed on studying highly compressible vapor flow situations,
including subsonic and supersonic flow fields with shock waves and flow reversal.
Bowman and Hitchcock solved the full unsteady compressible, Reynolds—averaged
turbulent Navier-Stokes equations in cylindrical coordinates. The vapor was assumed to
behave like a perfect gas. Because the governing equations were solved numerically using
the Explicit MacCormack finite difference method, the time step used in the calculations
was severely limited by a Courant-Friedrichs—Lewy-type condition, to avoid numerical
instabilities. Bowman and Hitchcock (1988) experimentally investigated vapor flow
dynamics using isothermal air injection and suction at the walls of a porous pipe made from

polyethylene beads. Comparison of the model predictions with experimental data was
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good for axial Mach numbers as high as 1.7. Based on this work, Bowman (1987)
established functional relationships of the friction coefficient for a simple, steady one—
dimensional model for highly compressible and sonic vapor flows. Bowman used the
compressible, one~dimensional, adiabatic and steady vapor flow model employing the
influence coefficients of Shapiro. As a result of the numerical and experimental studies
conducted, expressions for the friction coefficient as functions of the local axial Reynolds
number, Mach number, pipe aspect ratio, and radial Reynolds number were developed.
These expressions were shown to give excellent results when used in the one-dimensional
vapor compressible model and compared with experimental data. Based on experimental
measurements, the flow was found to be always laminar in the evaporator section, and

fully turbulent in most of the condenser section (for axial Reynolds numbers ranging from
2000 to 109).

2.3.2. Vapor Model of Issacci et al. (1988-1991)

Researchers at the University of California Los Angeles (Klein and Catton 1987; Issacci et
al. 1988, 1990 and 1991) also studied the heat pipe vapor dynamics, using a two—
dimensional approach. They solved the two—dimensional, laminar compressible Navier—
Stokes equations in a cylinder or slab. To provide mathematical closure to the system of
equations in the vapor region, the input heat flux and the temperature of the outer surface
were specified in the evaporator and condenser sections respectively. The evaporation
mass flux was estimated by dividing the heat input power by the latent heat of vaporization,
and the condensation rate was approximated by equating the heat of condensation to the
heat conducted radially across the wick. The interfacial vapor temperature was assumed to
be the saturation temperature corresponding to the interfacial vapor pressure. In the early
stage of their research, the authors used the SIMPLE method of Patankar (Issacci et al.
1988), upgraded eventually to the SIMPLER algorithm. However, because the SIMPLE-
type methods are limited to low—compressibility flows, the authors resorted to using the
CONDIF scheme for differentiating the convective terms (Issacci et al. 1990). A
Successive Over—Relaxation iterative method was used to solve the different equations, and
it was found that the sharp boundary conditions at the evaporator exit and entrance of the
condenser were perturbing the numerical scheme. These boundary conditions were
smoothed out to solve the problem. However, the numerical scheme was stable only for
low heat input fluxes, and the authors considered various filtering techniques. Issacci et al.
(1991) showed that a centered—difference scheme, when used with non-linear filtering,

yielded a second-order, stable solution and captured shocks without oscillations. This
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non-linear filtering technique was used to analyze the startup vapor dynamics of a sodium
heat pipe with a high heat input flux. The startup transient involved multiple wave
reflections from the line of symmetry in the evaporator section. It is not clear, however,
how this code could model free—molecule and/or transition flow conditions that occur

during the frozen startup of liquid—metal heat pipes, without any special treatment.

Although the vapor flow models of Bowman and Hitchcock (1988) and Issacci et al.
(1988, 1990 and 1991) have provided valuable information on the vapor flow dynamics,
they are of limited use for the design and transient analysis of heat pipes, because of the

thermal and hydrodynamic decouplings of the vapor from the wick region.

The characteristics of steady—state operation of heat pipe have been extensively studied,
both experimentally and theoretically. They include geometrical configurations, materials
of construction, heat transfer operation limits and life expectancy (Baker and Tower 1989;
and Woloshun et al. 1989). The experimental investigations of Ivanovsky et al. (1982) and
Tilton et al. (1986) suggested that during steady—state or slow transients, heat pipe
operation can be described solely by vapor dynamics and energy balance in the various heat
pipe regions. During normal heat pipe operation, heat is primarily transported radially by
conduction through the liquid—saturated wick, while phase change occurs at the L-V
interface. Temperature gradients exist at the L—V interface in the evaporator and condenser
regions and along the vapor core region, but in most cases they are small enough to be

neglected.

Traditionally, the second category regroups heat pipe models that have been developed for
design purposes. These models pay attention to only these phenomena that influence the
performance of heat pipes. At present there are 4 such models at different stages of
development (Tilton 1987; Faghri and Chen 1989; Cao and Faghri 1990; Jang 1988;
Jang et al. 1990a; Cao and Faghri 1993a, 1993b, and 1992). The models of this second
group ignore liquid flow in the wick as well as the interfacial phenomena such as capillary
effect and interfacial momentum exchange. Tilton et al. (1987), Faghri and Chen (1989)
and Cao and Faghri (1990) at Wright State University solved the two-dimensional heat
conduction equations in the wall and liquid-wick regions, which were thermally coupled to

either a one— or two—dimensional vapor flow model.
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2.3.3. The Model of Tilton et al. (1986-1987)

Tilton et al. (1986) studied numerically and experimentally the transient response of an
Inconel 617 sodium heat pipe subjected to adverse radiative heating of the condenser. The
first experiment used a sliding cylindrical shell radiant heater to simulate Laser illumination
of the condenser end, while an actual CO, Laser was used for the second test. The outer
surface temperature of the wall along the pipe was recorded as a function of time. Tilton
and co-workers assumed that the effective heat capacity of the cross section of the heat pipe
was axially uniform, and they made use of the global energy balance for the heat pipe to
calculate the rate of energy storage per unit length, by assuming that the heat pipe
responded isothermally at any given time. The heat pipe was divided into axial sections of
identical length, and by writing the sectional energy balance (and neglecting liquid and
vapor mass accumulation terms) the authors obtained a set of equations that related
evaporation/condensation flow rates to the external input/output heat fluxes. The vapor
axial flow rate was then obtained from steady—state mass conservation in the vapor core
region. The vapor pressure profile was then calculated using the steady one—dimensional
momentum balance with frictional and dynamic coefficients for laminar incompressible
flows, and the vapor temperature profile was obtained by assuming the vapor state to be
saturated. In his thesis, Tilton (1987) improved the heat pipe model by considering radial
conduction across the wall and liquid-wick regions. The L-V interfacial temperature was
assumed to be equal to the axially uniform vapor core temperature. The radial heat flux at
the L-V interface was equated to the phase change rate multiplied by the latent heat of
vaporization. Global mass conservation in the vapor core made it possible to calculate the
(uniform) vapor temperature through the equation of state. Internal iterations were
necessary to resolve the vapor temperature coupling. However, because the energy
equations were discretized explicitly, the size of the time step was limited in the calculations
to avoid numerical instabilities. Tilton (1987) pointed out that his performance model must
be used only for heat pipes operating at high temperature and for low heat input rates and
slow transients, under which conditions the vapor axial temperature variation and L-V
interfacial resistance can be neglected.

2.3.4. The Model of Faghri et al. (1989-1990)
In their two-dimensional steady-state model, Faghri and Chen (1989) assumed

thermodynamic equilibrium at the L-V interface (the interfacial temperature is equal to the

vapor saturation temperature) and evaluated the evaporation/condensation rates from the
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energy balance at the interface. They used the iterative method developed by Spalding and
Rosten (1985) for the generalized PHOENICS code, combined with the SIMPLEST
technique to accelerate the convergence of the vapor momentum equations. With this
model, Faghri and Chen evaluated the effects of axial conduction, vapor compressibility
and viscous dissipation on the operation of water and sodium heat pipes. Cao and Faghri
(1990) extended Faghri and Chen's model to perform transient calculations. They used the
SIMPLE method, and incorporated the effect of vapor compressibility by treating the vapor
pressure as a dependent variable and directly applying the state equation to obtain the
density while iterating. These authors simulated the transient operation of sodium heat
pipes and demonstrated the ability of their model to handle highly—compressible and
supersonic flow conditions in the vapor region. However, they neglected liquid flow in the
wick and the hydrodynamic coupling between the liquid and vapor phases. Jang (1988),
Jang et al. (1990a) and Cao and Faghri (1993a, 1993b and 1992) also modeled the startup
of heat pipes from a frozen state.

2.3.5 The Model of Jang et al. (1988, 1990a)

Jang (1988) developed a pure—conduction transient model for rectangular heat pipe cooled
leading edges, and compared its predictions with Camarda's (1977) experimental results.
The capillary structure was assumed to be saturated and liquid flow in the capillary
structure was neglected. Evaporation and condensation rates were evaluated from the
kinetic theory to account for the thermal resistance at the L-V interface. Different startup
periods were considered, including free—molecule and continuum vapor flow conditions.
During the first period, Jang (1988) obtained the vapor temperature by equating the
evaporative heat input to the sonic limited heat transport. When continuum flow is
established along the heat pipe, one—dimensional steady compressible equations were used
in the vapor core. Later, Jang et al. (1990a) improved the model by solving the one—
dimensional transient compressible flow equations for the continuum vapor flow, and
developed a model for the frontal startup of circular heat pipes from a frozen state. The
phase change of the working fluid was modeled by using the fixed—grid heat capacity
method. Because this method is only applicable to a special case of the general form of the
energy equation, it is prone to numerical instabilities and inaccurately calculates the melting
front location and the temperature profiles in the solid and liquid regions. Jang and co—
workers derived the Darcy—extended momentum equations in the wick, but neglected the
flow of liquid in their numerical solution. They used the transition temperature at a

Knudsen number of 0.01 to characterize the axial location of the free—molecule flow front,
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and assumed no heat or mass transfers at the boundaries of the rarefied vapor zone.
Unfortunately, these assumptions do not allow the vapor to accumulate progressively in the

heat pipe core, so that the vapor flow would never reach the continuum regime.
2.3.6 The Model of Cao and Faghri (1992, 1993a, 1993b)

Cao and Faghri (1993a) improved the model of Jang et al. (1990a) by using a rarefied self—
diffusion vapor model to simulate the early startup period of high-temperature heat pipes.
After the melting front has reached the vapor-wick interface, evaporation and condensation
rates were calculated using a modification of the kinetic theory of gases. Cao and Faghri
(1993b) extended the model by using a two-region description of the vapor core. The
continuum vapor flow region was modeled using the two—dimensional compressible
Navier-Stokes equations, while the rarefied vapor flow region was simulated by a self-
diffusion model, the two vapor regions being coupled with appropriate boundary
conditions at the axial front defined by the transition temperature. Based on the results of
their model, Cao and Faghri (1992) developed an approximafe flat—front analytical solution
for the startup of high—temperature heat pipes, and proposed a frozen—startup operation
limit which indicated the possibility of dryout in the evaporator. This limit was obtained by
comparing the rate of increase of the mass of liquid in the wick (due to axial propagation of
the melting front) with the rate of loss of the working fluid by resolidification of vapor on
the frozen substrate. The two rates were found to be similar for a number of heat pipes,
indicating that resolidification of working fluid is a potential factor for failure of the startup
of high—temperature heat pipes also. Cao and Faghri (1993a, 1993b) used a fixed—grid
temperature transforming method to predict the freezing and melting of working fluid in the
wick (Cao and Faghri 1990b). Their numerical scheme, however, required strong under—
relaxation of the temperature and a large computation time when the mushy cell temperature
range (6T) was small. Also, because of the sharp thermal conductivity jump at the liquid—
solid interface, their model predicted wiggly temperature time histories. In reference
(1993a), Cao and Faghri used a width of the mushy region as large as 1 K, claiming that it
is small enough to simulate the phase—change of pure substances. However, only the least
challenging cases of identical (or almost identical) liquid and solid properties had been

investigated during the development of their phase—change model (Cao and Faghri 1990b).
Some of the above models (in the second category) have focused on the modeling of free—

molecule and transition flow regimes in the vapor and have provided valuable information

concerning the startup of high—temperature heat pipes. Under normal conditions, the
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transient response of heat pipes is dictated by thermal capacity and conductance of the shell,
capillary structure and working fluid, and is only slightly influenced by liquid and vapor
dynamics. However, when drying or resaturation occurs in the wick, when the working
fluid is frozen or in a thermodynamic near—critical state, working fluid dynamics may
become very significant. Unfortunately, all of the heat pipe models above treated the wick
as a pure conducting medium, assumed a uniform distribution of the working fluid, and
neglected liquid flow, hydrodynamic coupling between the liquid and vapor phases, and
solid-vapor mass transfers. Therefore, these models are not capable of predicting the
operation limits of the heat pipe, such as capillary, entrainment, dryout of the wick, and the
redistribution of working fluid by sublimation and resolidification during the startup of heat
pipes from a frozen state. Tilton (1987) and Cao and Faghri (1990) recognized that the
hydrodynamics of both the liquid and vapor phases must be modeled in order to predict

these operation limits.

Investigators of the third model category have considered modeling of the liquid flow and
treated the vapor flow as compressible. Faghri and Buchko (1991) extended the capability
of their two—dimensional steady—state model (Faghri and Chen 1989) by including the
effect of liquid flow in the wick. They used the steady Darcy-extended flow equations for
a saturated and isotropic porous medium, but computed the pressure profiles along the heat
pipe independently. In their models, Costello et al. (1988) and Peery and Best (1987)
treated the liquid and vapor flows in the heat pipe as one—dimensional and compressible
flow problems, and evaluated the evaporation and condensation rates at the L-V interface
using modified forms of the kinetic theory relationship. The evaporator end of the heat
pipe contained a porous node to store excess liquid fluid, while the excess liquid in the
condenser end was assumed to exist in slug form. At the condenser end, the liquid

pressure in the wick was assumed to be equal to the vapor pressure in the core.
2.3.7 The Model of Costello et al. (1988)

Costello et al. (1988), on contract for Los Alamos National Laboratory, developed a heat
pipe model to predict the transient behavior of liquid—metal heat pipes during startup from
the frozen state and operational shutdowns. The friction factor was a function of the
Knudsen number to simulate free-molecule and transition flow conditions that occur during
startup at low temperature. The flow equations in the vapor region were solved using an
iterative scheme based on the KACHINA method developed by Harlow and Amsden

(1971). The liquid flow equations in the wick were solved using a modified version of the
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SIMPLER algorithm developed by Patankar (1980). At each axial location, the liquid and
vapor pressure difference was tested against the maximum capillary pressure head. If the
pressure difference exceeded the capillary pressure, the node was flagged as being dried
out. Freezing and melting processes in the wick were treated by an enthalpy method. The
two—dimensional energy equation was solved in the wall and wick regions with a radial
lumped model to determine the radial temperature profile. Although their model is quite
comprehensive, Costello and co—workers did not report any calculation results. It is
believed that the temporal discretization scheme associated with the KACHINA algorithm
limited the time step for calculations. The use of this iterative semi-implicit solution
algorithm implies that computer running times would be prohibitive for modeling realistic

operational transients.
2.3.8 The Model of Peery and Best (1987)

Peery and Best (1987) developed a model to simulate the transient operation of a
rectangular water heat pipe tested at Texas A&M University. The two—dimensional
transient conduction equation was used to model the heat transfer through the heat pipe
wall, while the liquid and vapor flows were treated as one—dimensional and compressible.
Both fluid phases were assumed to be saturated. Evaporation and condensation rates were
evaluated using a modified form of the kinetic theory relationship. Once the temperatures
and phase—change mass rates were obtained by solving the coupled energy and kinetic
theory equations, the one—dimensional continuity equations were solved in the fluid regions
for the vapor and liquid axial velocities. The pressure distributions were then obtained
from the one—dimensional momentum equations. Even so Peery and Best used
oversimplifying assumptions, their model suffered from numerical instability, and the
authors could only report calculations of small transients (up to 2 seconds). Extremely
small time steps (104 s) were required to solve iteratively for the coupled energy and
kinetic theory equations. This constraint on the time step was previously reported by
Subbotin when using his model for predicting evaporation / condensation rates.

In conclusion, Costello et al. (1988) and Peery and Best (1987) did not succeed. The
numerical instabilities encountered by these authors are attributed to the numerical methods
they used, which were not suitable to handle the complexity of the problem, particularly the
coupling with the kinetic theory relationship. Also, it is well known that determination of

the velocities from the continuity equation alone (as it was done in the model of Peery and
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Best) is not only inaccurate but also a source of instabilities that become amplified with

time.

Unfortunately, all the investigators mentioned above ignored the hydrodynamic coupling at
the L-V interface. Such decoupling of the liquid and vapor momentum equations can result
in erroneous liquid and vapor flow rates and pressures. This uncertainty is attributed to the
fact that neither of these models satisfy the local interfacial force balance at the L-V
interface. The simplified form of the Pascal relationship (which neglects the effect of flow)

reads as:

PV—PL:?_Rg cos8_ | @.1)
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where o is the surface tension of the liquid, 68,, is the wetting angle between the liquid and
the wick matrix, and R is the radius of curvature of the liquid meniscus at the L-V
interface. incorporation of Equation (2.1) into the model poses an additional constraint on
the solution procedure as the later must implicitly calculate R, . Instead of this approach,
Costello et al. (1988) and Peery and Best (1987) employed a global pressure relation given
below to check if the capillary limit had been exceeded:

(Py ~Py),,, S22 cosh, . 2.2)
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where R, is the effective pore radius of the wick at the L-V interface. These models

assumed that the heat pipe was operational as long as Equation (2.2) was satisfied.

As pointed out by Hall and Doster (1989), it is necessary to accurately model the capillary
phenomena along the entire length of the heat pipe and thus, adequately satisfy the local
capillary relationship of Pascal, Equation (2.1). Setting the liquid and vapor pressures
equal at an assumed axial location and computing the phasic pressure distributions
independently does not allow the capillary pressure difference to adjust to system
parameters. Consequently, models using this approach could not accurately calculate the
vapor and liquid flow rates and pressures during a transient, and were not capable of
predicting the capillary and dryout operation limits.

The fourth category regroups the heat pipe models that use a geometric approach for

modeling the radius of curvature of the liquid meniscus. Ransom and Chow (1987), Hall
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and co—workers (1988-1994) and Seo and El-Genk (1989) incorporated liquid flow and
thermal expansion, hydrodynamically coupled the liquid and vapor phases, and predicted
the vapor volume distribution in the wick. They used the capillary relationship of Pascal
(Equation 2.1) to relate the phasic pressures. The pore radius, R, is fixed by the geometry
of the wick, and the radius of curvature of the liquid meniscus at the L-V interface, R, is
related to the amount of vapor in the wick. The maximum pressure difference occurs when
R, is equal to the pore radius; in this case, the volume of vapor in the wick forms a
hemisphere of radius R, in each pore of the wick surface. These geometrical
considerations allow to express the vapor void fraction in the wick in terms of R, the wick

surface porosity, and the diameter of the vapor core.
2.3.9 The Model of Ransom and Chow (1987)

The Advanced Thermal Hydraulic Energy Network Analyser (ATHENA) heat pipe model
of Ransom and Chow (1987) is a modification of the reactor transient code RELAP-5 (a
general purpose thermal hydraulic transient simulation code for two—fluid, two—phase
stratified flow systems). In this model, the two—fluid heat pipe formulation is obtained
from the one—-dimensional area—averaged phasic momentum equations by retaining distinct
phasic pressures. The Pascal relationship (Equation 2.2) is used to relate the phasic
pressures. Ransom and Chow reported steady—state pressure and axial velocity
distributions for a lithium heat pipe with a wick material having a pore radius of 2.5 um
and operating at an evaporator input flux of 4.3 kW/cm2. The results suggest the
soundness of the model and the stability of the iterative semi—implicit numerical scheme
used. However, to minimize the number of changes to the original solution scheme of
RELAP-5, the phasic pressure difference was evaluated explicitly, which led to severe time
step restrictions, much less than the Courant-Friedrichs-Lewy (CFL) limit, and resulted in
large computational time for each run. It is not clear how the evaporation and condensation
mass rates were evaluated. We can only assume that the thermodynamic equilibrium
condition used by RELAP-5 was extended for modeling heat pipe operation as well. The
authors pointed out that in the case of liquid flooding, the diphasic interface is flat and the
pressure difference between the phases is equal to zero, while this pressure difference is
equal to a maximum corresponding to R, = R, when the vapor volume fraction exceeds the
volume of a hemisphere of radius R, times the number of pores available at the surface of
the wick. These specifications define the variation of the interphase pressure difference in
terms of the vapor volume fraction in the heat pipe. However, only the relationship

corresponding to normal conditions was considered in the model, so that wick flooding or
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dryout conditions were not modeled. Finally, Ransom and Chow (1987) did not model
the phase—change of working fluid in the wick during startup from a frozen state, nor the

free-molecule and transition vapor flow regimes.
2.3.10 The Model of Hall et al. (1988-1994)

Hall (1988) and Hall and co—workers (1990-1994) developed the THROHPUT (Thermal
Hydraulic Response Of Heat Pipes Under Transients) code to model the transient behavior
of a circular lithium heat pipe during startup from a frozen state and operational shutdowns.
Hall and co—workers incorporated liquid flow in the wick, hydrodynamic coupling of the
liquid and vapor phases, and the effect of noncondensible gas in the vapor core (air). Their
model predicted the solid, liquid and vapor volume fractions along the heat pipe, so that
liquid pooling and recess were modeled. The THROHPUT code predicts the evaporation,
condensation and resolidification rates using the kinetic theory equation proposed by
Collier (1981). However, the two—dimensional conservation equations were averaged over
the radial direction, yielding a one—dimensional axial model. The important radial effects
and interphase transfer terms were treated in separate lumped submodels. For simplicity,
specific heat capacities were assumed to be constant, and the thermal mass of the wick
matrix was neglected. This was justified because the screen wick material has thermal
properties that are similar to solid and liquid lithium, and because of the presence of an
open annulus between the wall and the screen wick. Melting and freezing processes were
modeled with a discontinuous heat flux at the liquid-solid boundaries. Hall and co-
workers assumed that the phases existed in radial layers in order to simplify the radial
submodel. Four specific configurations were considered: cold state (all solid), startup or
melting (wall-liquid—solid), normal operation (all liquid), and shutdown or freezing (wall—
solid-liquid). The THROHPUT model assumes that the radial temperature distributions
are parabolic in each non—vapor layer. The three coefficients for each layer are determined
by forcing the equations to satisfy the temperature and heat flux boundary conditions, and
to match the layer average temperature with that computed in the axial model. If a liquid-
solid interface exists, it is forced to be at the melting temperature and to satisfy a phase-
change jump condition for a moving interface. The capillary pressure relationship is not
applied if a node is solid or in the process of melting. The governing equations were
discretized on a staggered grid and linearized using an implicit Taylor series expansion
about the old time step. Because the model of Hall is basically one~dimensional, it was
possible to solve the linearized coupled finite-difference equations directly, using

specialized block—diagonal matrix inversion methods. Hall and Doster (1988) attempted to
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simulate a Los Alamos experiment (Merrigan et al. 1986) of the frozen startup of a 4 m-
long lithium heat pipe. In order to simulate the first 50 seconds of the thaw transient the
authors needed 5 hours of CPU time on a VAX 11/750. In further developments, Hall and
Doster (1989, 1990) used the Dusty Gas Model of Cunningham and Williams to treat free-
molecule flow regime as well as continuum flow regime in the vapor core. Also, they
incorporated an axial melt front submodel in THROHPUT. In the new model, the axial
progression of the melt front was modeled by combining the radial model with a lumped—
parameters axial treatment (Hall 1988). Finally, the evaporation—condensation mode] was
extended to include recondensation at the evaporating surface, and used accommodation
coefficients to account for non-ideal behavior. Hall (1988) and Hall and Doster (1989,
1990) showed that using multiple passes (updating the Jacobian at each pass) to update the
highly nonlinear equations (particularly the gas mixture state equation and the capillary
pressure relationship) reduced the linearization errors, which had limited the time step size.
With this new numerical approach, a 2-hour-long transient was simulated using
approximately 24 hours of CPU time on a VAX 8600.

In some stages of the THROHPUT calculations, it was found that there was not enough
total vapor pressure to support the capillary pressure difference. In early versions of the
code, this was viewed as a shortcoming, and Hall forced the liquid pressure equal to zero
to prevent any negative liquid pressure in the wick. However, when adjacent liquid nodes
showed the same condition, there was no pressure difference between them, resulting in no
axial liquid flow. To remedy this problem, Hall and Doster (1989, 1990) assumed that
some of the capillary pressure was directed axially when there was a difference in liquid
volume fraction between two nodes. This treatment caused their model to predict dryout of
the evaporator when this did not occur experimentally for the same conditions. In an
attempt to resolve this problem and reproduce the experimental results, Hall and co—
workers (Hall 1988; and Hall and Doster 1990) varied the values of the evaporation and
condensation accommodation coefficients used in the calculation. The code could satisfy
each of several experimental criteria separately by adjusting these coefficients, but no pair
of coefficients could meet all of the requirements simultaneously. This behavior prompted
the authors to suggest that the accommodation coefficients were dependent on temperature,
liquid level, wick porosity, gas velocity and flow regime, and could be much smaller than
one for liquid—-metals. To justify their findings, Hall and co-workers mentioned the
experimental results of a number of researchers who measured condensation heat transfer
in liquid-metals to be a fraction of the predictions of Nusselt theory. Other investigators

found that the accommodation coefficient strongly depended upon surface contamination
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(Hall and Doster 1990). In a recent paper, Hall et al. (1994) performed in—depth literature
reviews of experimental measurements of evaporation / condensation accommodation
coefficients and of the possibility of tension in the liquid phase. They found that values of
the accommodation coefficients close to unity could be measured for both liquid—metal and
non-liquid metal working fluids when care was taken in the experiments to avoid surface
contamination, the presence of non—condensable gas, and other forms of experimental
errors. Furthermore, Hall et al. (1994) found several references which described the effect
of tension in the liquid (that is, the possibility of negative liquid pressure) and validated its
physical existence. The first experiment that exhibited tension in the liquid was performed
by the French chemist Marcellin Berthelot in the 19th century. Other examples can be
found in nature, as for example water—filled cavities in minerals and the rising of sap in
trees. In the later version of the THROHPUT code, Hall et al. (1994) allowed negative
liquid pressure in the wick (the effect of pressure on liquid density, or isothermal
compressibility, is negligible when compared with the effect of temperature, or thermal
expansion) and used unity accommodation coefficients to calculate the evaporation,
condensation and resolidification rates. With these modifications, the model results were
greatly improved and agreed reasonably well with the experimental data of Merigan et al.
(1986) for the frozen startup of a lithium heat pipe.

In summary, THROHPUT (Hall and co-workers 1988-1994) is one of the most
comprehensive heat pipe models to date. It is the only model with provisions for predicting
liquid recess, partial dryout and resaturation of wick, and pooling of excess liquid in the
vapor core. However, THROHPUT has certain drawbacks. Because this model is
basically one—dimensional, it does not deal with freezing and melting of the working fluid
mechanistically, hence, its predictions during startup and shutdown transients are only
approximate. Furthermore, because heat transfer through the metallic matrix of the wick
was not modeled separately, THROHPUT cannot be used to predict the startup of low-
temperature heat pipes from a frozen state.

2.3.11 The Model of Seo and El-Genk (1989)

Seo and El-Genk (1989) at the University of New Mexico developed a transient model for
simulating the operation of fully—thawed liquid—metal heat pipes. They assumed the liquid
flow in the wick region to be two-dimensional, transient, incompressible and laminar.
However, a quasi—steady state, compressible one~dimensional approximation was used to

simulate the vapor flow. Seo and El-Genk used the laminar two—dimensional Navier—
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Stokes equations and retained only these terms that could be discretized using the axial
variables of the vapor. In the same spirit, the second derivative of the axial liquid velocity
in the momentum conservation equations was neglected compared to its radial gradient.
While the authors recognized the limitations of such an approach, their goal was to design a
fast running heat pipe code for incorporation in the Space Nuclear Power System Analysis
Model (SNPSAM), of SP-100 space nuclear power system (Seo 1988). The two-
dimensional transient conduction equation was solved in the wall region, and specific heat
capacities were assumed to be constant for simplicity. The model was developed for
liquid—metal working fluids and employed an annular wick structure covered by a screen
mesh, so that there was no need to consider the thermal mass of the screen wick. The
evaporation and condensation rates were obtained from the energy balance at the L-V
interface by dividing the liquid radial heat flux in the wick by the latent heat of vaporization.
Seo and El-Genk used the geometric Pascal relationship to explicitly satisfy the interfacial
local force balance, and the capillary limit was detected when the effective radius of
curvature of the liquid meniscus in the wick became equal to the geometrical pore radius.
In addition, Seo and El-Genk incorporated implicitly the dependence of surface tension on
liquid temperature in their model. The equations were discretized implicitly using a
conventional finite difference method, and an iterative solution scheme was used to resolve
the interfacial couplings. The Poisson equation was formed in the liquid region by
combining the continuity and momentum conservation equations, and was solved for the
pressure of the liquid phase. To verify the model predictions, results were compared with
the experimental data of Merrigan et al. (1986) for a 4 m-long cylindrical lithium heat pipe.
During normal operation, a high—frequency RF coil heated the evaporator section, while the
condenser section was cooled radiatively. After shutdown, both the evaporator and
condenser sections were radiatively cooled. The model prediction of the wall temperature
distribution after shutdown before the working fluid reached its freezing point agreed well
with the experimental results, except at the end of the condenser region. It was found
experimentally that during normal operation, excess working fluid pooled into the vapor
core and filled approximately the last 50 cm of the condenser, causing higher measured
temperatures at this end of the heat pipe. It is not clear how pooling effects were treated in
the model, when the interfacial liquid meniscus flattens at some point along the heat pipe.
Finally, Seo and El-Genk did not model the phase—change of working fluid in the wick
during startup from a frozen state, nor the free-molecule and transition vapor flow regimes.
Also, their model could not handle highly compressible flow conditions and propagation of

shock waves in the vapor core region.
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In summary, there has not been a detailed, accurate and efficient transient analysis model
for the startup of heat pipes from a frozen state. Some of the processes occurring during
the startup of heat pipes from a frozen state, such as sublimation and resolidification, liquid
flow and liquid recess in the wick, partial dryout and resaturation of wick, and pooling of

excess liquid, have not been incorporated nor explicitly investigated.

To verify the heat pipe models and assess the accuracy of the numerical schemes employed,
it is preferable to compare the model predictions with experimental data. The next section
summarizes the experiments reported in the literature for low—temperature and high—
temperature heat pipes.

2.4. LITERATURE REVIEW ON EXPERIMENTAL DATA

Heat pipes using low vapor pressure working fluids (such as liquid metals, sodium,
potassium and lithium) typically exhibit a frontal startup, whereas those using fluids with
high vapor pressures (such as water and ammonia) exhibit a uniform temperature startup.
The startup characteristics of low—temperature and high—temperature heat pipes from a
frozen state differ significantly due to differences in the vapor pressure of the working fluid
near the melting point. In low—temperature heat pipes, although the vapor pressure is large
enough so that the startup difficulties associated with the viscous and sonic limits are
avoided, significant migration of the working fluid from the evaporator to the colder
regions of the heat pipe occurs. Once the solid working fluid is melted in the evaporator,
dryout may occur due to immediate vaporization of the fluid.

2.4.1 High-Temperature Heat Pipe Experiments

The startup of high—temperature heat pipes from the frozen state has been extensively and
experimentally investigated (Deverall et al. 1970; Ivanovskii et al. 1982; Jang et al. 1990a;
Faghri et al. 1991; Jang 1995), and successful startup of such heat pipes is consistently
achieved. The vapor flow in high—-temperature heat pipes remains in the free-molecule
regime for temperatures well above the melting temperature. This has the beneficial effects
of minimizing the transport of the solid working fluid to the condenser by sublimation /
resolidification. The large thermal conductivity of liquid—-metal working fluids also allows
melting of the working fluid in adiabatic and condenser sections by conduction, before
large scale evaporation of the liquid occurs.
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Camarda (1977) evaluated analytically and experimentally the performance of a sodium heat
pipe for cooling the leading edges of Earth reentry vehicles. The pipe wick consisted of
seven alternate layers of 100— and 200-mesh stainless steel screens, and the transient
operation of the heat pipe during a space shuttle reentry was simulated by using radiant
heaters consisting of quartz iodine lamps. Tolubinsky et al. (1978) have investigated
experimentally the frozen startup of sodium and potassium heat pipes subject to continuous
radiation heating and high—frequency heating of the evaporator. They showed that the latter
mode of heating considerably reduced the startup time.

BECHTEL NATIONAL, under DOE contract (Preliminary Heat Pipe Testing Program
1981) has analyzed the capability of sodium and potassium heat pipes to survive the cyclic
operation associated with solar receiver power systems, for such transient as fast startup
and cloud passing. They selected Incoloy 800H for the container material, and the heat
pipes were equipped with a stainless—steel parallel-tent mesh structure. Insulation was

simulated with an array of radiant quartz lamps.

Intensive performance investigations and startup and shutdown studies of liquid—metal heat
pipes have been carried out at the Los Alamos National Laboratory (Kemme 1966;
Deverall et al. 1970; Kemme et al. 1978; Merrigan 1985; Merrigan et al., 1985 and
1986). Kemme (1966) compared the performance of axially—grooved pipes charged with
potassium, sodium and lithium working fluids in the temperature range 750-1150 K.
Particular attention was devoted to startup and low temperature operation. The heat
transport capability of the heat pipe was significantly improved when the grooves were
covered with a wire—screened mesh, which increased the capillary and entrainment limits.
Deverall et al. (1970) studied the effect of sonic vapor velocity and related startup
problems, and reported temperature measurements of a mercury heat pipe. They
demonstrated the effects of noncondensable gas and heat rejection rate at the condenser on
the startup. Other attempts have been made to fill the heat pipe with noncondensible gas to
make it start more readily. A significant decrease in startup time was noted by Ivanovskii et

al. (1982) for increasing amounts of noncondensible gas loading in sodium heat pipes.

Kemme et al. (1978) investigated the thermal performance of mercury, potassium, sodium
and lithium heat pipes with various wick structures. A 4-m-long lithium/molybdenum heat
pipe was tested experimentally by Merrigan et al. (1985 and 1986) in transient and steady—
state operations at temperatures up to 1500 K. Tests conducted included startup from the

frozen state, high power steady-state operation, and shutdown with continuous radiation
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thermal loading. Tilton et al. (1986) studied analytically and experimentally the transient
response of an Inconel 617, sodium heat pipe subject to adverse thermal heating of the
condenser. The first experiment used a sliding cylindrical shell radiant heater to simulate
Laser illumination of the condenser end, while an actual CO; Laser was used for a second
test. The outer surface temperature of the wall along the pipe was recorded as a function of
time.

Jang (1995) investigated experimentally the frozen startup of a stainless steel / potassium
heat pipe with a 40—mesh screen wick. A total of 9 Chromel-alumel thermocouples were
installed on the outer surface of the wall. The heat pipe was tested in a vacuum chamber to
simulate radiation heat transfer at the condenser, and the evaporator of the heat pipe was
radiatively heated by an annular, radiation—shielded silicon carbide heater. Jang (1995)
estimated the transition temperature between free—molecule and continuum vapor flow
regimes using a Knudsen number of 0.01. Experimental data showed that the heat pipe
was inactive until the evaporator end cap temperature reached the transition temperature.
Then, the evaporation of liquid became significant and a continuum flow front propagated
axially along the heat pipe, until the condenser end cap temperature reached the transition
temperature. After that point, the entire heat pipe became active and eventually reached
steady-state operation. Jang (1995) observed that the startup period could be significantly
reduced by increasing the evaporator heat input. At a power throughput approximately
equal to 80% of the heat pipe capillary limit, dryout of the evaporator occurred before the
condenser was completely melted. However, successful startup was achieved later as the

wick became resaturated with liquid again.

Faghri et al. (1991) also investigated the startup of a sodium heat pipe with muitiple
evaporator heat source. They measured the outer wall temperature along the heat pipe, and
the vapor temperature using a multipoint thermocouple probe. The startup behavior of the
sodium heat pipe, which was radiatively cooled in vacuum, was always frontal in nature,
with a sharp temperature dropoff in temperature across the vapor front. The low condenser
heat rejection rate prevented supersonic vapor velocities and caused the condenser
temperature to slowly rise to the steady—state value. Experimental measurements showed
that the moving vapor temperature front was much steeper than the outer wall temperature
front, and the vapor temperature was more uniform in the hot zone than the wall
temperature. When the heat pipe was tested in air, the duration of the startup period was
about halved, because the convective losses by natural convection increased the condenser

heat rejection rate. The startup of the sodium heat pipe in air was sonic limited, and the
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very steep vapor temperature dropoff in the condenser indicated the existence of supersonic
vapor flow in that section. However, evaporator dryout never occurred, and the startup

was always successful.
2.4.2 Low-Temperature Heat Pipe Experiments

Experiments on the startup of low—temperature heat pipes are rare. Deverall et al. (1970)
successfully started a water heat pipe from a frozen state. Because of the relatively high
vapor pressure of water, even near the melting temperature, choked and/or supersonic
vapor flows were not encountered during the startup. Experimental results showed that the
heat pipe became immediately active where the ice was melted. Redistribution of frozen
working fluid in low-temperature heat pipes occurred during startup due to sublimation
and resolidification of vapor (Faghri 1992; Kuramae 1992; Ochterbeck and Peterson
1993). Such processes may prevent successful re—startup of the heat pipe during cyclic
operation. The vapor resolidifies in the cooler parts of the heat pipe and cannot return back
to the evaporator. Eventually, the wick might completely dryout in the evaporator.

Faghri (1992) measured the wall and vapor temperature profiles along a water / copper heat
pipe and investigated the frozen startup and shutdown transients. The wick of the heat pipe
was made of two layers of 50 mesh copper wire—screen. Three flexible heaters were
installed side by side along the evaporator section of the heat pipe, and the condenser was
cooled with a chiller using ethylene glycol as the coolant. The input power to the
evaporator was 20 W, well below the capillary limit of the heat pipe. After sitting the heat
pipe in a -21°C freezer for at least 12 hours, startup was attempted with no chiller coolant
flow. After the ice was melted in the evaporator, water evaporated and resolidified onto the
frozen adiabatic and condenser sections of the heat pipe. Eventually the evaporator wick
dried out because the still partially frozen adiabatic section could not provide any
condensate return. Faghri (1992) was able to start the frozen water heat pipe successfully
by pulsing the power input. As soon as the temperature difference between any two vapor
thermocouples exceeded 3 K, the input power was turned off. This allowed the working
fluid in the frozen section immediately adjacent to the hot zone to melt and rewet the wick.
Once the vapor temperatures became uniform again (within 1 K), another power pulse was
applied. In an another experiment, Faghri (1992) froze the water heat pipe from room
temperature by supplying the condenser chiller with -15°C coolant. Because the
evaporator temperature was always above that of the condenser during the freeze—out

transient, a significant portion of the working fluid was displaced by evaporation and
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sublimation from the evaporator to the condenser where it resolidified. The reduced
amount of ice in the evaporator led to an early dryout after the re—startup of the heat pipe.
In cases of low—temperature heat pipes with large evaporator-to—condenser length ratio,
complete blockage of the vapor channel was observed, due to resolidification of working
fluid (Ochterbeck and Peterson 1993).

Reinarts and Best (1990) attempted the startup of a rectangular water heat pipe with a
conventional 100-mesh screen, from frozen and thawed conditions. They measured vapor
pressure and temperature and surface wick temperature in the condenser and the evaporator

regions and observed wick dryout and subsequent rewetting.

The effect of noncondensible gas on the startup of a water heat pipe was also investigated
by Ochterbeck and Peterson (1993). The gas—vapor interface, observed visually, was
found to be quite sharp. In the region containing the gas, resolidification and condensation
of water vapor did not occur. A frontal startup, characteristic of high—temperature and

gas—loaded heat pipes, was observed in the gas—loaded water heat pipe.

Several other experiments have been performed which involved fully-thawed water heat
pipes. Fox and Thomson (1970) have measured the axial and radial temperature
distributions in the vapor region of a water heat pipe. They have compared two different
wire-screened wick designs, a dual wick in which generation of superheated vapor
occurred, and a conventional 100-mesh wick, for which the steady-state vapor flow
observed was isothermal. Feldman and Munje (1978) evaluated the thermal performance
of gravity—assisted circular pipes with and without circumferential grooves. Gernert
(1986) presented axial variations of vapor and pipe wall surface temperatures of a water
heat pipe with a copper sintered—powder wick and multiple heat sources under steady—state
conditions. Faghri and Thomas (1989) compared the performance characteristics of
circular and annular water heat pipes having longitudinal grooves at various tilt angles.
Jang et al. (1990b) measured the axial variation of the wall surface temperature in a water
heat pipe with longitudinal grooves, during heatup transients from ambient conditions to
steady—state.

Recently, El-Genk and Huang (1993) investigated the transient response of a horizontal
water heat pipe. The copper heat pipe employed a double-layered, 150 mesh copper screen
wick. The vapor temperature was measured along the centerline of the heat pipe using a

special probe made of a thin-walled brass tube instrumented with eleven thermocouples,
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equally spaced along the heat pipe. An additional eleven thermocouples were attached to
the outer surface of the heat pipe wall. The evaporator section was uniformly heated using
a flexible electric tape, while the condenser section was convectively cooled using a water
jacket. Results showed that the transient response of the heat pipe could be described by an
exponential function of time. El-Genk and Huang (1993) determined the time constants of
the vapor temperature and effective power throughput during heatup and cooldown
transients, as functions of the electric input power and the water flow rate in the condenser
cooling jacket. In a follow—up study, El-Genk et al. (1995) experimentally investigated the
effects of inclination angle on the transient response of a gravity—assisted copper / water
heat pipe, subjected to step changes in input power and varied condenser cooling rates. At
steady—state, the effective power throughput, determined from the heat balance in the
condenser cooling jacket, was 443 W. The difference between the electric input to the
electric tape and the steady—state effective power throughput (132 W) was approximately
equal to the heat losses from the surface of the insulation in the evaporator section to

ambient by natural convection (El-Genk and Huang 1993).

It is apparent that only a few startup experiments of low—temperature and high—temperature
heat pipes have been attempted in the literature, and that most experiments conducted have
basically been performance tests, rather than phenomenological investigations. It is not an
easy task to monitor phenomena occurring within a short distance in a closed pipe. For
example, because of practical limitations, no direct measurements of the actual progression
of the melting front and mass transfers associated with sublimation and resolidification
were possible. Experimental data available are limited to wall temperatures in most cases,
with few attempts made to measure the vapor pressure or temperature inside the heat pipe.
Therefore, there is a need for systematic theoretical and experimental studies of the transient
behavior of liquid—-metal and non-liquid metal heat pipes. The outcome of these studies
would be useful to better benchmark calculation models for the design of reliable heat pipes
for space and terrestrial applications. The transient modes of interest are power step
changes, reversed heat pipe operation due to a condenser external heating, and the startup

of heat pipes from a frozen state.
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3. MODEL FORMULATION AND DESCRIPTION

In this work, a two—dimensional Heat Pipe Transient Analysis Model, "HPTAM", is
developed to simulate the transient operation of fully—thawed heat pipes and the startup of
heat pipes from a frozen state. This chapter describes the physical model used in HPTAM.
The model incorporates the following processes: (a) sublimation of working fluid in the
evaporator and resolidification in the condenser; (b) melting and freezing of the working
fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a
thin liquid film on a frozen substrate; (d) liquid flow and heat transfer in the porous wick;
(e) thermal and hydrodynamic couplings of vapor, liquid and solid phases at their
respective interfaces; (f) accumulation of excess liquid in a liquid pool at the end of the
condenser; and (g) free—molecule, transition and continuum flow regimes in the vapor

region.

HPTAM is a fully two—-dimensional heat pipe model which has the capability of handling
both rectangular (flat—plate heat pipe) and cylindrical geometries. Nevertheless, the
analysis throughout this work focuses on heat pipes having a cylindrical geometry. The
model divides the cylindrical heat pipe into three radial regions: wall, wick, and vapor
regions (Figure 3.1), and solves the complete form of governing equations in these
regions. The heat pipe wick can be a wire—screened mesh, an isotropic porous medium
such as a powder or a bed of spheres, or an open annulus separated from the vapor core by
a thin sheet (with small holes to provide capillary forces). To predict the flow of liquid in
the porous wick of the heat pipe, HPTAM uses the Brinkman-Forchheimer-extended
Darcy model (Section 3.1). The properties of wicks (such as permeability and effective
thermal conductivity) are calculated, based on analysis of experimental data. The model
employs the complete form of the Navier—Stokes compressible flow equations in the vapor
region of low—temperature heat pipes (Section 3.2), and solves the two-dimensional
transient conduction equation in the pipe wall (Section 3.3).

Section 3.4 describes the interfacial and boundary conditions of the problem. Evaporation,
condensation, sublimation and resolidification rates are calculated using the kinetic theory
relationship with an accommodation coefficient of unity. The model predicts the radius of
curvature of the liquid meniscus at the liquid—vapor interface, and the radial location of the
working fluid level (liquid or solid) in the wick, and includes the transverse momentum

jump condition (capillary relationship of Pascal) at the liquid—vapor (L-V) interface. The
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radius of curvature of the liquid meniscus is geometrically related to the volume fraction of
vapor in the wick. These features allow the model to predict the capillary limit and partial

liquid recess (dryout) in the evaporator wick.

In Section 3.5, the modified fixed—grid homogeneous enthalpy method used to handle the
phase—change of working fluid in the wick is described. The volume of working fluid in
the heat pipe varies with temperature, due to thermal expansion of the liquid phase. A
liquid pooling submodel is developed and incorporated into HPTAM, which simulates
(de)wetting phenomena and the accumulation of excess liquid in the vapor core at the

condenser end. This liquid pooling model is described in Section 3.6.

During the startup of high—temperature heat pipes (utilizing liquid—metal working fluids),
rarefied and transition flow regimes arise in the vapor region. These flow regimes are
described in Section 3.7.

Finally, the model accounts for the change in physical properties with temperature and in
density upon melting and offers several choices of working fluids, such as lithium,
sodium, potassium and water, and of structural materials, including tungsten, niobium,
zirconium, stainless—steel, carbon and copper. The liquid and vapor state equations and the
thermophysical properties of the fluids and structural materials of the heat pipe are
described in the last Section of this chapter (Section 3.8).

3.1. GOVERNING EQUATIONS IN THE LIQUID/WICK REGION

The liquid/wick region is constituted of the liquid phase of the working fluid and the solid
structural phase of the wick, whether it is an annular wire-screened mesh or a
homogeneous porous medium. HPTAM models the wick as an isotropic and
homogeneous porous medium. Most analytical studies of flow through porous media have
dealt primarily with a mathematical formulation based on Darcy's law, which neglects the
effects of solid boundaries and inertial forces on fluid flow through porous media. These
effects are particularly important for high—porosity media. To account for these effects,
Forchheimer and Brinkman extended Darcy's law, and other investigators introduced the
transient and convective inertia effects into their generalized flow equation (see APPENDIX
A). The flow of liquid in the porous region of the heat pipe is modeled using the
Brinkman-Forchheimer—extended Darcy flow model (Scheidegger 1974), while the

volume-averaged homogeneous model described by Cheng (1978) is used to model the
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heat transfer (see APPENDIX A). The model assumes thermal and hydrodynamic
equilibrium in the porous medium, and neglects the thermal dispersion diffusivity since
heat conduction is the only significant mode of heat transfer in this region. The form of the
Brinkman-Forchheimer—extended Darcy's flow equations can be partly justified through
analytical volume-averaging of the microscopic conservation equations, which provides a
mean to identify the apparent viscosity in the Brinkman's term. It is then postulated that
Darcy's term and Forchheimer's extension are the necessary constitutive relationships to

model the unknown terms arising from the volume—-averaging process (APPENDIX A).
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FIGURE 3.1. Physical Model of Heat Pipe and Boundary Conditions.

HPTAM uses the Brinkman—Forchheimer—extended Darcy's flow equations for modeling
liquid flow in a fully-saturated isotropic porous wick. The resulting governing equations
in the liquid/wick region of the heat pipe are best rewritten in terms of the mean filter (area—
averaged) velocity q instead of the pore velocity (actual fluid velocity), and are given in

the following subsections.
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3.1.1. Conservation of Mass

The continuity equation in the wick of the heat pipe has the following form:

ap . _
s—a% + dxv[qu]=0 (3.1)

3.1.2. Conservation of Radial Momentum

The radial momentum balance in the wick can be written:

19(pLar) 1 aPL

ET+E_2div(qurq):pLFr = [“L+\/—|9Lq|}qr+ —=Aq,

where (3.2)
Aq =199 | %, 9194 |
ror| or 2 0z| oz

3.1.3. Conservation of Axial Momentum

The axial momentum balance in the wick can be written:

1 a(quZ) | - oP 1
c o 82 IV(quzq) pLE, dz I:KZ \F |qu‘] q;
where (3.3)
19),99 | 9, 9|d,
2= ror| or 2 dz| dz

The parameters &, K and K, are the effective porosity and radial and axial permeabilities of
the liquid—wick region, respectively. Two additional permeability terms have been

introduced into the axial and transverse momentum conservation equations (3.2) and (3.3)
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to account for the enhanced pressure losses in a homogeneous porous medium, as
demonstrated by Darcy's experiment (Scheidegger 1974). The third, fourth and fifth terms
on the right-hand side of the momentum Equations (3.2) and (3.3) are commonly referred
to as the Darcy, the Forchheimer, and the Brinkman terms, respectively. The permeability
K and the "inertia coefficient" C are functions of the microstructure of the porous medium,
and can be determined from the measured static pressure drop and mass flow rates.
Experimental investigations (Ergun 1952; and Beavers and Sparrow 1969) for uni-
directional flows of water and gases through packed columns and fibrous materials showed
that the Darcy's and the Forchheimer's extensions can accurately express the relationship

between flow rate and pressure drop in porous media.

The form of Equations (3.1), (3.2) and (3.3) can be partly justified analytically through
volume—-averaging of the microscopic conservation equations (Cheng 1978; and Gray and
O'Neill 1976), which explains why these equations have been used with success in recent
years to model flow of liquids in porous media (Beckermann and Viskanta 1988; and Raw
and Lee 1991). The final attractive feature of these equations is that they approach the
empirical representation of flow in a porous medium (the Forchheimer—extended Darcy
flow model) as the permeability, K, decreases, and reduce to the standard Navier-Stokes
equations as the porosity € goes to 1 and the permeability goes to infinity.

Expressions for the hydrodynamic properties of wicks, such as volume porosity €,

permeability K and inertia coefficient C are given in APPENDIX A-4.

3.1.4. Conservation of Enthalpy in the Liquid/Wick Region

In the present model, the volume-averaged homogeneous enthalpy method is used to
predict the transport of energy in the heat pipe wick, assuming local thermal and
hydrodynamic equalibrium between phases and negligible thermal dispersion coefficients.

The resulting enthalpy conservation equation has the form (see APPENDIX A):

%[e(ph)L +(1- 8)(ph)m}+ div[(ph)Lq] = a;L +q, agrL +q, a;; —div(é) +é<bL,

(3.4)
where @y is the viscous dissipation:
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Note that since we are only concerned here with slow liquid flows in the wick generated by
gravity or capillary forces, viscous dissipation and compressible effects can be neglected in
the liquid. In this case, the right-hand side of Equation (3.4) reduces to the divergence of
the heat flux vector.

3.2. GOVERNING EQUATIONS IN THE VAPOR REGION OF LOW-
TEMPERATURE HEAT PIPES

For the case of high—vapor pressure (or low—temperature) working fluids such as water,
the vapor flow is in the continuum regime, and HPTAM uses the two-dimensional
transient compressible Navier—Stokes flow equations.

3.2.1. Conservation of Mass

The continuity equation in the vapor region of the heat pipe has the following form:

d _
gtv + div [vaV} =0 (3.6)

3.2.2. Conservation of Radial Momentum

The radial momentum balance in the vapor can be written:
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3.2.3. Conservation of Axial Momentum

The axial momentum balance in the vapor can be written:

\%
MWL div(p, Uy 0 ) =
t (3.9)
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Note that the model incorporates acceleration effects in the axial and radial directions
(Equations 3.2, 3.3, 3.7 and 3.9). The two—dimensional cylindrical model can handle heat
pipe operation in microgravity conditions (space applications) or in an axial force field; this
1s possible through the axial external acceleration term F; in Equations (3.3) and (3.9).
Rotating circular heat pipes, also, can be modeled through the radial acceleration term F; in
Equations (3.2) and (3.7). However, the model cannot handle a non-symmetric problem
such as a horizontal circular pipe in a uniform gravity field. The latter is a truly three—
dimensional problem, that could be solved approximately by assuming that non-axial

gravity contributions are small enough not to disturb the circumferential symmetry of the
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liquid flow in the annular wick, because the width of the liquid annulus is very small (less

than a few millimeters). In such case, F; is taken to be zero.

3.2.4. Conservation of Energy

The enthalpy conservation equation in the continuum vapor region has the form:

oPy +uY
r
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where @y is the viscous dissipation:
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For the case of high—vapor pressure (or low-temperature) working fluids such as water, it
is a good approximation to assume the vapor phase to be saturated. This approximation is
valid for continuum—flow conditions in the vapor, when the vapor pressure of the fluid is
high, and to some extent for transition and free—-molecule flow regimes. In this case, the
vapor temperature is evaluated in terms of the vapor pressure along the saturation line, and

there is no need to solve the vapor energy conservation equation.

3.3. GOVERNING EQUATIONS IN THE PIPE WALL REGION

The wick region is thermally coupled to the annular wall of the heat pipe. The energy
balance equation in the heat pipe wall region reduces to the well-known transient
conduction form of Equation (3.4):

d

-a—t(ph)w + div(éw) -0 . (3.13)
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3.4. INTERFACIAL AND BOUNDARY CONDITIONS

In two—phase flow, the interface between the liquid and vapor phases is a surface of
discontinuity and local jump conditions must be derived, which relate the values of the flow
parameters on both sides of the interface. Both the local instantaneous governing equations
and jump conditions were developed in their general and conservative form by following
the procedure described by Delhaye (1974 and 1976).

3.4.1. Liquid-Vapor Interfacial Jump Conditions

The derivation of the interfacial jump conditions starts with the integral balance laws written
for a fixed control volume containing both phases. These integral laws are then
transformed by means of the Leibnitz rule and Gauss theorems to obtain a sum of two
volume integrals and a surface integral. The volume integrals lead to the well-known
monophasic local instantaneous equations (compressible Navier—Stokes equations) in each
continuous phase. The surface integral furnishes the local instantaneous jump conditions at
the interface. The continuity of the normal mass fluxes at this interface (evaporation/

condensation) yields:
m=p U =pyU’ . (3.14)

The Marangoni and capillary effects arise in the linear momentum jump conditions by
taking into account the surface tension force acting on the contour of the diphasic separative
interface. The normal momentum jump condition at the L-V interface relates the static
pressure drop across the interface to the capillary pressure head in the wick and the normal

viscous stress discontinuity as:
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The first two terms on the left hand side represent the capillary relationship of Pascal,
which has been used in almost all previous heat pipe models reported in the literature, only
to check if the capillary limit has been exceeded. The Pascal relationship is only valid for

incompressible and inviscid phases with no mass transfer at the interface, therefore it is not
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necessarily applicable to heat pipe modeling. The third term on the left hand side accounts
for change of momentum at the L-V interface. Other terms on the right account for radial
stresses in the liquid and vapor phases. These terms are very small in a heat pipe and can
be neglected. In Equation (3.15), the two principal radii of curvature are assumed identical
(and equal to R;) because, for small mesh size in the wick, the interfacial pores are very

small and are locally hemispherical.

The transverse momentum jump condition relates the tangential velocities of the phases at
the L~V interface to the axial gradient of the surface tension (Marangoni effect, d6/dz) and

the discontinuity in shear stress:

L v oU; dUy)  (oU) dU)) do _
m(U} Uz)+uL[ ol i b el R i U (3.16)

In the present model, this transverse momentum jump condition is simplified by assuming
the continuity of the tangential velocities at the interface. This simplification is physically
acceptable when dealing with viscous phases separated with a solid wire-screened mesh or
a homogeneous porous medium (this is the case of a no-slip condition at the L-V
interface). Therefore, the transverse momentum jump condition (3.16) is replaced by the

following equations:
ul=uY=0 . (3.17)

The enthalpy jump condition relates the enthalpy phase change due to
evaporation/condensation across the L—V interface to the discontinuities of the conduction

flux, kinetic energy and energy dissipated by viscous stress:

L L v v
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Making use of Equation (3.17) and neglecting the viscous stress terms in Equation (3.18a)
leads to the simplified form:

(3.18a)
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Q:’—-Qf+'ﬁ(hv—hL)+‘ﬁ‘i __12_____1__2]:0 (3.18b)
2{pY (epy)

Equations (3.14) through (3.18) specify the discontinuities of mass, momentum and
enthalpy fluxes at the L-V interface. However, an additional equation is needed at this
interface to formulate a closed form solution of the governing equations and boundary
conditions (see Figure 3.1). This relation is obtained by assuming continuous temperature
at the L-V interface:

TH=TY =Tint . (3.19)
3.4.2. Radius of Curvature of the Liquid Meniscus in the Wick

In Equation (3.15), the radius of curvature of the liquid meniscus at the interface, R, is
geometrically related to the amount of vapor in the wick. Because the meniscus is concave
at the L-V interface, the wick is partially filled with vapor (Figure 3.2). The maximum
capillary pressure head occurs when the radius of curvature of the liquid meniscus in the
wick, R, equals the pore radius, Rp. Assuming hemispherical pores, the maximum
volume of vapor in the wick forms a hemisphere of radius R, in each pore of the wick
surface. For this condition, the volume of vapor in the hemispherical pores of the wick
interfacial cell (iL,j) is:

, 2R} AZ. ,
Vizgl — ) gnR3 :inR eR) AZ. . (3.20)
P nR? 3 P) 3 pTme
p

The void fraction o, (the volume of vapor in the wick interfacial pores over the total

volume of the pores V},) is a geometric function of the cosinus of contact angle of the liquid
meniscus (Uc = Ry /R.) as (Seo and El-Genk 1989):

[

2
apzﬁ[l—[l+%)«/1—u§} (3.21)

where orp and ¢ vary between 0 and 1, as explained later. Equation (3.21) is inversed

using the following approximations derived by Seo (1988) and Seo and El-Genk (1989),
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FIGURE 3.2. Illustration of Liquid-Vapor Interfacial Geometry.
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FIGURE 3.3. Pore Void Fraction as a Function of the Cosine of Contact Angle of
the Liquid Meniscus (Seo and El-Genk 1989).
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reproduced here to correct an error in the second formula ("0.413" instead of "0.443"):

W = % op (1-1.723 a) for o <0.25
_8 1

Figure 3.3 shows the pore void fraction as a function of the cosine of contact angle of the
liquid meniscus, using both the theoretical Equation (3.21) and the approximate
relationship (3.22). As this figure shows, Equation (3.22) is a very good approximation of
the inverse of Equation (3.21).

3.4.3. Interfacial Phase-Change Mass Rates
To account for the phase change thermal resistance at the L-V and S~V interfaces,

evaporation, condensation, sublimation and resolidification mass rates are calculated from

an extension of the kinetic theory of gases to non-flat interfaces:

1/2
. M
m=p,U’=a, |——1 [P,-P]|, 3.23
pvU, Lc[mgm) [Pv—P3"] (3.23)

where PV, the pressure of a vapor bubble in thermal equalibrium with the surrounding

liquid, is given as (Defay and Prigogine 1966):

P =P (Tint).EXP _2o M_ 1 . (3.24a)
sat R { R,Tint jp,

A positive m indicates condensation or resolidification, while a negative value indicates
vaporization (evaporation or sublimation). For all practical cases, however, the term in
squared brackets is negligible, so that the exponential term is very close to unity.
Therefore, Equation (3.24a) simplifies to:

equ __ :
PP =P_ (Tint) . (3.24b)
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3.4.4. Other Boundary Conditions

Equations (3.1) through (3.13) are solved subject to the interfacial jump conditions
described in the previous subsections and to the boundary conditions delineated in Figure
(3.1). The jump conditions (I) are represented by Equations (3.14) through (3.19), (3.16)
excluded, while the boundary conditions (II) and (III) are given, respectively, as:

Q,=0, U,=U,=0, and QF=QY, Tt=1V uvl=ul=0.- (325

That is, the liquid and vapor velocities are taken equal to zero at all solid boundaries of the
numerical domain (no—slip condition). Both ends of the heat pipe are assumed insulated,
and isoflux, adiabatic, isothermal or radiative boundary conditions (IV) are applied
independently at the outer wall of the evaporator, adiabatic and condenser sections,
respectively.

3.4.5. Initial Conditions and Mathematical Closure

The governing equations, jump relations and boundary conditions, together with the
equations of states for both the liquid and vapor phases, thermophysical properties for the
wall and both fluid phases, and the initial conditions specified by the user provide all
necessary relations to obtain a closed mathematical system of equations (see Table 3.1).
Initially, at the startup from a frozen state, the vapor, solid and wall temperatures are
uniform and equal, and the vapor pressure is equal to the saturation pressure of the
working fluid calculated at the heat pipe temperature. The radius of the solid—vapor (S-V)
interface is uniform and smaller than that of the screen/wick surface (Rind = Ry < Rwik)
when modeling the startup of a water heat pipe from a frozen state (due to the decrease in
water density upon freezing), and can be larger than that of the screen/wick surface (Rjpd =
R, 2 Ry) for a liquid—-metal heat pipe (due to the increase in density upon freezing of the
working fluid).

The model calculates the wall temperatures, the temperatures, pressures, and mass fluxes

(or velocities) of the liquid and vapor, and the radii of curvature of the liquid meniscus at

the L-V interface (or vapor void fractions in the wick along the pipe).
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One should not overlook the fact that the proper choice of boundary conditions is always

governed by the mathematical nature of the equations, which results from the highest order

TABLE 3.1. Mathematical Closure of the Physical Model.

Region / Equations  Unknown Boundary Conditions / Jump Conditions
WALL
Enthalpy Tw 2 wall boundary conditions (insulated ends)

1 outer wall boundary condition

1 radial heat balance at wick/wall interface
LIQUID/WICK
Enthalpy TL 2 wall boundary conditions (insulated ends)

1 temperature condition at wick/wall interface

1 radial heat balance at L/V interface
Radial momentum qr 3 wall boundary conditions (q; = 0)

1 radial mass balance at L/V interface
Axial momentum qz 3 wall boundary conditions (q; = 0)

1 axial velocity condition at L/V interface (q, = 0)
VAPOR
Enthalpy Ty 2 wall boundary conditions (insulated ends)

1 symmetric boundary condition (insulated)

1 temperature condition at L/V interface
Radial momentum uUv 2 wall boundary conditions (U;Y = 0)

1 symmetric boundary condition (U;Y = 0)

1 radial momentum balance at L/V interface
Axial momentum u,v 2 wall boundary conditions (U, =0 on pipe ends)

1 symmetric boundary condition (BUZ /or =0)

1 axial momentum balance at L/V interface

Additional Unknowns

Additional Equations

Radius of Curvature
Liquid Density
Vapor Density

pL
Pv

Kinetic Theory Relationship, Equation (3.23)
Equation of State, pp=F(P_,TL)
Equation of State, pyv=G(Pvy,Ty)
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derivatives. As a consequence, the solution considered globally depends strongly on the
dissipative terms in the Navier—Stokes equations (conductive heat flux, and viscous
stresses). This property is obviously related to the problem of uniqueness of the solution
in the inviscid case. All the governing equations (mass, momentum and energy balances)
possess the following form:

%(p¢)+div(pﬁ¢) =div(T'Vo)+S - (3.26)

The various terms in Equation (3.26) represent, from left to right, accumulation,
convection, diffusion and source effects. When diffusion is included, the conservation
equations (energy, radial and axial momentum) possess second (highest) order derivatives.
Since they are solved in a two—dimensional (cylindrical or rectangular) space, every one of
them requires 2x2=4 boundary conditions, one on each boundary of the domain to which
they apply. Note that these considerations do not apply to the mass balance Equations
(3.1) and (3.6), which are of first order. The continuity equation is an extra equation to be
satisfied by the additional degree of freedom, the density or the pressure, these two
quantities being related through the equation of state of the fluid.

3.5. FREEZE-AND-THAW MODELING

To handle the startup from the frozen state and subsequent freezing during cooldown,
HPTAM incorporates the volume-averaged homogeneous enthalpy method (see
APPENDIX A-2). In this formulation, the enthalpy is used as a dependent variable along
with the temperature, and there is no need to satisfy explicitly interfacial conditions at the
phase—change boundary. An enthalpy equation for each phase (the porous matrix, liquid
and frozen phases) is derived analytically using the volume—averaging technique (Gray and
O'Neill 1976; and Cheng 1978). These equations contain some unknown convective and
dispersive terms, which involve the deviations of the fluid velocity and temperatures from
their intrinsic averages, as well as surface integrals of temperatures and interphasic
exchange quantities over the separative interfaces between the three phases. In the
approach known as the homogeneous model, the evolution equation of the overall spatial
average temperature is formed by adding the energy equations associated with each phase;

the various interphasic exchange terms simply cancel each others.
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The volume-averaged homogeneous enthalpy method is used in the present model to
predict the thaw (or freezing) of the working fluid in the heat pipe wick, assuming local
thermal and hydrodynamic equalibrium between phases and negligible thermal dispersion
coefficients. The volume-averaged homogeneous enthalpy method offers several
advantages: (a) it employs a fixed—grid numerical scheme; (b) it accounts for the
complicated interfacial structures of the various constituents and is valid for any volume
fractions of the wick porous matrix and the liquid and frozen phases of the working fluid;
and (c¢) it does not necessitate implicit tracking of the liquid—solid (L-S) interface. This
method is also preferred because it can be easily incorporated into the conventional fully—
thawed enthalpy conservation scheme. This is an important advantage, particularly since
the change—of—phase is only one of the multiple processes involved in the physical
operation of heat pipes. The resulting enthalpy conservation equation has the form (see
APPENDIX A-2):

2 fex(on); + e - 1(ph), +(-e)ph), ] +div (o), a]

_ oP,
ot

(3.27)

+q, o +q, & —dxv(Q)+;:-<I)L,

where the subscripts S, L and m refer to the frozen phase, liquid phase and solid matrix
respectively, € is the porosity (void fraction) of the porous matrix, and ¥ is the fraction of
the frozen fluid in the voids of the porous matrix. Since we are only concerned here with
slow liquid flows in the wick generated by gravity or capillary forces, viscous dissipation
and compressible effects can be neglected in the liquid. In this case, the right-hand side of
Equation (3.27) reduces to the divergence of the heat flux vector. The main difficulty of
the enthalpy formulation is that an appropriate procedure is required to insure that the
velocities are null in the solid phase. The idea is to derive a flow equation which reduces to
the proper form of the Brinkman—Forchheimer-extended Darcy equations in a liquid
control element, yields zero velocity in a frozen volume element, and provides a transition
zone in the mushy element which, though artificial, maintains mass and momentum
balances. This is best achieved by a gradual slow—down technique, which treats each
volume element undergoing phase—change as a porous medium with known liquid volume
fraction (Voller and Prakash 1987; and Beckermann and Viskanta 1988). This technique
replaces the wick porosity, €, appearing in Equations (3.1) to (3.3), (A-6) and (A-41) with
the liquid volume fraction in the wick, &/-y) ; thus, the permeability and liquid velocity
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approach zero near the frozen region, as the momentum Equations (3.2) and (3.3) reduce to

the hydrostatic pressure equations.

Finally, the parallel theoretical model (Equation A-45) and Maxwell's Equation (A-47) for
randomly packed and sized cylinders are used to calculate the effective axial and radial
thermal conductivities of the screen wick, respectively (see APPENDIX A-5). The model
of Veinberg (Equation A-52) for distributed spheres is used to calculate the effective
thermal conductivity of isotropic porous media such as ceramic powder, metallic felt or
sintered metal.

3.6. LIQUID-POOLING SUBMODEL

An effect that has been overlooked in earlier models is the thermal expansion of the liquid
during the startup/cooldown of the heat pipe. Liquid thermal expansion is very important
for transient modeling of heat pipes utilizing working fluids having high thermal expansion
coefficients, such as liquid-metals and water. Experiments have shown that during
startup, the liquid volume in the heat pipe increases, causing its excess volume to pool at
the end of the condenser and reduce its effective length (Merrigan et al. 1986). Such a
behavior could not be accounted for if the liquid flow and thermal expansion are neglected,
resulting in erroneous predictions of the liquid and vapor pressures in the heat pipe. Also
modeling these phenomena is of paramount importance to accurately predict the wicking

limit and dryout conditions.

Figure 3.4 presents a schematic of the liquid model incorporated in the present effort.
During the startup of a heat pipe, as the input power to the evaporator increases with time,
the temperature of the liquid phase in the evaporator section increases rapidly initially, and
hence the working fluid volume increases due to thermal expansion. When the rate of
increase in the liquid volume (taking into account vapor condensation in the condenser
section) exceeds the liquid flow rate towards the evaporator, the radius of curvature of the
liquid meniscus increases. Eventually, the rising concave liquid meniscus at the L-V
interface becomes flat at some point along the heat pipe (such occurrence is referred to
herein as the wet point , as defined by Busse and Kemme, 1978). At the wet point, liquid
and vapor interfacial total pressures become equal and the void fraction in the pores of the
wick is zero. The position of the wet point can be determined by comparing the vapor
pressure recovery with the liquid viscous pressure drop in the condenser region. When the

former is small compared with the latter, the wet point occurs at the end of the condenser
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region. If the pressure recovery exceeds the liquid pressure drop in the condenser, the wet
point moves across the condenser till it eventually appears at the beginning of the condenser
region in the case of a much higher pressure recovery. After the first wet point is
encountered, further heating of the heat pipe could cause the liquid meniscus at the wet
point to become convex, which would correspond to the case of a negative pore void
fraction at the L-V interface (Figure 3.3). While such a convex liquid meniscus in the wick
might be possible in principle under normal operating conditions, it cannot occur in
practice. Because of vapor shear stress and condensation at the L-V interface, such an
interface structure is unstable, the excess liquid will be entrained by the vapor stream,
transforming the convex meniscus into a coherent liquid plane surface (Busse and Kemme
1978). Therefore, for any practical reasons, the interface is flat at any wet point position in
the heat pipe. As the expanding liquid is dragged by the vapor high—velocity flow, the wet
point propagates across the condenser region. Eventually, the wet point reaches the end of
the condenser, forming a liquid pool. Experiments performed at Los Alamos by Merrigan
et al. (1986) using a lithium heat pipe have shown that during startup, excess liquid in the

heat pipe pools at the end of the condenser and reduces its effective length.

A submodel has been incorporated into HPTAM to handle these liquid—pooling processes.
This submodel assumes that as the transient progresses in time, any excess liquid is swept
by the vapor flow towards the end of the condenser, leaving a flat interface and filling up
the eventual concave menisci on its way. When a convex liquid meniscus occurs
somewhere along the heat pipe, the interface is set flat (the void fraction in the pores of the
wick is forced to be zero) at this particular location. The radial momentum jump condition
at the L-V interface (Equation 3.15) is used to calculate the pressure in the liquid cell next
to the diphasic interface. Then, using the mass balance in this cell, the mass of the liquid
pooling into the vapor core is determined. This mass is then transported into the next
interfacial liquid cell. Therefore, the wet point moves towards the end of the condenser.
When the interface at the end of the condenser becomes flat, excess liquid accumulates in
the vapor core and forms a liquid pool. The liquid—pooling submodel also simulates liquid
pool recession conditions during the subsequent cooldown of the heat pipe. As the heat
pipe cools down, the average liquid temperature and volume decrease due to thermal
contraction, and the amount of excess liquid which accumulated at the end of the condenser
(liquid pool) is reduced, and eventually vanishes, so that a positive liquid meniscus is
restored in the condenser region.
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Other phenomena, such as free-molecule and transition flow regimes, need to be

considered to model the transient operation of high—temperature heat pipes.
3.7. FREE-MOLECULE AND TRANSITION FLOWS REGIMES

During the startup at low temperature of a frozen or fully—thawed liquid—metal heat pipe,
very low pressures arise in the vapor region, and free-molecule and transition flow
conditions are prevalent there. The gas flow through a cylindrical channel can be classified
into three types, depending on the dimensionless Knudsen number K;,, which is the ratio
of the molecules mean free path A to the channel diameter D (Dushman and Lafferty 1962,
chapter 2). The first type of flow is the viscous flow regime, which occurs when the mean
free path is very small compared to the diameter of the channel, so that molecule-molecule
collisions dominate. The second type of flow, the free—molecule flow regime, occurs
when the mean free path of the gas is large compared to the channel diameter, and is limited
by the molecular collisions with the walls. The third type is the transition flow regime, for
which both molecule-molecule and molecule—wall collisions are important. These three

types of flow have been classified as follows:

(1) viscous flow, for K, <0.01
(2) transition flow, for 001 <K, <1 (3.28)
(3) free—molecule flow, for 1. <K,

The values of the Knudsen number, 0.01 and 1.00, are rather arbitrary, since the viscous
and transition flow regimes are approached asymptotically; they correspond to a ratio of
viscous to total flow conductance of 90% and 7.7% respectively (APPENDIX B).

The flow charts for lithium, sodium, potassium and water heat pipe working fluids give an
estimate of the transition temperatures between viscous, transition and free—molecule flows
regions, as a function of the vapor core diameter. To draw these flow charts, the mean free
path of the vapor molecules is calculated as a function of temperature using Equation

(B—1), reproduced here for convenience:

M 1 A 1 k T

= D=2a=—=— r (B_])
\/ETEO"Na P, Kn Kn \/Enoz Pou(Ty)
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where M is the molecular weight and o is the effective diameter of the gas molecules. In

this equation, the vapor density is taken as that of the saturated phase. The effective
molecular diameters of lithium, sodium, potassium and water heat pipe working fluids are
estimated in APPENDIX B.

The resulting flow charts for liquid—-metals and water heat pipe working fluids are
presented in Figures (3.5) to (3.7). For a liquid—metal heat pipe with a vapor core diameter
of 2.2 cm, the transition temperatures between free—molecule, transition and viscous flow
regimes are 810K and 1030K for lithium, 540K and 680K for sodium, and 450K and
570K for potassium (Figure 3.5). Clearly, since these liquid—metal fluids are frozen at
room temperature and have melting temperatures (453.7 K, 371.0 K and 336.4 K
respectively) below their free~molecule transition temperature, a heat pipe startup from
frozen conditions belongs to the free—molecule flow regime; therefore it is necessary to
include such modeling to predict the transient operation of liquid—metal heat pipes from the
frozen state and the fully—thawed condition.

For a water heat pipe, viscous flow conditions are prevalent over the whole temperature
and pipe diameter ranges of interest (micro—heat pipes are not being considered here),

because of the relatively high vapor pressure of this fluid above its melting temperature
(Figure 3.7).

Because funding from NASA Lewis Research Center was discontinued in March 1994, the
present report does not include any information concerning the modeling of the free—
molecule and transition vapor flow regimes. However, the final version of HPTAM
includes the capability of modeling these non—continuum flow regimes and the frozen
startup of liquid—metal heat pipes, and this effort is well documented and described in Mr.
Tournier's Dissertation (1995).

The thermophysical properties of the wall material and the working fluids, and the state

equations of the liquid and vapor phases are described in the next subsection.
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3.8. THERMOPHYSICAL PROPERTIES AND STATE EQUATIONS

The thermophysical properties of the wall material and the liquid and vapor phases are
taken to be temperature dependent (also pressure dependent when relevant). The model
incorporates various working fluids such as lithium, sodium, potassium and water, as well
as various structural materials including tungsten, niobium, zirconium, stainless—steel,
carbon and copper.

Additional wall materials are easily incorporated, as they only require knowledge of
density, thermal conductivity and heat capacity as a function of temperature. However, for
a new working fluid, a great deal of data is needed, since the properties of the solid, liquid
and vapor phases are needed (see Table 3.2). Much of these properties are difficult to

locate, particularly for the vapor phase.
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TABLE 3.2

Properties of Working Fluids (Solid, Liquid and Vapor Phases).

References and Temperature Range of Validity for the Thermophysical

Property of working fluid lithium sodium potassium water
Melting temperature Ty,
[\gNeastpl986] 453.7 K 3709 K 336.4 K 273.15K
Saturation vapor pressure || Tjn,—1600 K | T(p—1450 K | Tn—1400 K | T,n—600 K
Psai(T) [Hall 1988] [Vargaftik [Vargaftik [Irvine and
1975] 1975] Liley 1984]
Surface tension of liquid || T;n—1600 K | T,—1450 K | T;—1400 K | 300—647 K
phase o(T) [Léger 1980]| [Vargaftik | [CEA 1963] | [Vargaftik
1975] 1975]
Density of saturated liquid || Tm—1600 K | Tn—1450 K | T,—1400 K | Tjp—647 K
pL (T) [Léger 1980] | [Vargaftik [Vargaftik [El-Wakil
sat 1975] 1975] 1981]
I[sothermal compressibility || T(,—2000 K | Tn—2000 K | T,—1800 K | 300—373 K
of saturated liquid B,(T) [Ohse 1985] | [Ohse 1985] | [Ohse 1985] | [Weast 1986]
Dynamic viscosity of liquid || T;m—1500 K | Tjn—1500 K | T(n—1500 K | T;,—600 K
phase p (T) [Ohse 1985] | [Ohse 1985] | [Ohse 1985] | [El-Wakil
1981]
Thermal conductivity of Tm—I1500K | T(n—1500 K | T(n—1500 K | Tn—600 K
liquid phase kg (T) [Léger 1980] | [CEA 1963] | [CEA 1963] | [El-Wakil
1981]
Specific heat capacity of Tm—1600K | T;n—1500K | T—1500K | Tjn—647 K
- L Vargaftik Vargaftik Woloshun et | [Irvine and
liquid phase Cp(T) [ 1975] [ 1975] [ al. 1989] £iley 1984]
Dynamic viscosity of 80*—2000 K|800*—1500 K[800*—1500 K| Ty,—600 K
[Vargaftik [[Woloshun et [ [Woloshun et | [Vargaftik
(saturated) vapor kv(T) 1975] al. 1989] | al. 1989] 1975)
Thermal conductivity of  |[700*—2500 K[700*—1500 K[700*—1500 K| T;—620 K
(saturated) vapor ky(T) [Ohse 1985] | [Ohse 1985] | [Ohse 1985] | [Vargaftik
1975]
Latent heat of vaporization || T,—1600 K | T;—1500K | Tn—1500K | Tn—647 K
hte(T) [Vargaftik [Vargaftik [Vargaftik [Reynolds
1975] 1975] 1975] 1979]
270 K—T,, | 100 K—T, | 100 K—Tp,
: : 100 K—Tp, [Metals [Metals [Touloukian
Density of solid phase ps(T) | 111.11"/988] | Handbook | Handbook 1970]
l 1979] 1979]
Thermal conductivity of 100 K—Tp, | 100 K—Ty, | 100 K—Ty, | 120 K—Tp,
solid phase kg(T) [Touloukian | [Touloukian | [Touloukian | [Ross et al.
1970] 1970] 1970] 1978]
4323 kJ/kg | 113.0kl/kg | 59.5 kl/kg
Latent heat of fusion Hiyyg [Metals [Metals [Metals 333.6 kl/kg
Handbook Handbook Handbook [[Moeller 1980]
1979] 1979] 1979]
Specific heat capacity of 100 K—Tp, | 100 K—Ty, | 100K—Ty, | 70 K—T},
. S [Touloukian | [Touloukian | [Touloukian }[Weast 1986]
solid phase Cy(T) 1970] 1970] 1970]

*: correlation can be used at lower temperatures.

77




TABLE 3.3. References and Temperature Range of Validity for the Thermophysical
Properties of Structural Materials.
Property of Melting Density Thermal Specific heat
structural material temperature PmS conductivity capacity
Thus km(T) Cg‘(T)
3680 K | 19350 kg/m3 | 120—3000 K [ 2732600 K
tungsten [Weast 1986] | [Weast 1986]| [Hoetal [Touloukian
1968] 1975]
2740 K 8570 kg/m3 |200—2300 K {273—1900 K
niobium [Weast 1986] | [Weast 1986] | [Hoet al. [Touloukian
1968] 1975]
zirconium 2120K 6490 kg/m3 |200—2000 K [298—1800 K
(0.£B metallic phase [Weast 1986] | [Weast 1986]| [Hoetal. | [Touloukian
change at 1140 K) 1968) 1973]
1700 K 7900 kg/m3 | 80—1200 K |200—1230 K
stainless—steel [Weast 1986] [Weast 1986] [Metals [Metals
Handbook Handbook
it 1979] 1979]
>3700 K | 2250 kg/m3 [200—1500K CL“:
carbon [Weast 1986] | [Weast 1986] [Sclhglélglder 1506 J/kg.K
1360 K 8920 kg/m3 [200—1200 K [323—1273 K
copper [Weast 1986] | [Weast 1986]| [Hoetal. [Touloukian
1968] 1975]

In addition to the thermophysical properties, inverse functions and derivative functions are
needed in many cases to perform the numerical solution of the problem. For these reasons,
all of the property information is in the form of functional evaluations. Most of these
functions were derived by using least—squares regression on table values and experimental
data from the literature. Tables 3.2 and 3.3 show the references selected for the various
properties of working fluids and structural materials, and give the temperature range of
validity of the extrapolated functions. For every property, data from several references
were plotted against each other as a function of temperature. In most cases, good
agreement was found in between the various references, and a consistent set of data was
selected that would cover the widest range of temperature. Due to the limitation in space,
only the major dataset reference is given in Tables 3.2 and 3.3. It is important to specify
the temperature range of validity since all too often a function obtained by least-squares
regression gives nonphysical results (such as very large or negative values) outside the

temperature interval of extrapolation.

78



The density of the liquid phase is calculated as a function of pressure and temperature to
account for the fluid thermal expansion and compressibility. Because of the capillary
pressure head at the L-V interface, due to the concave meniscus in the wick, the pressure
of the liquid phase is less than the corresponding vapor pressure, that is the liquid phase is
subcooled. Because the van der Waals state equation cannot practically be used away from
the critical point, the density of the liquid phase is obtained in terms of pressure and

temperature from the following relation:
p(T.P ) ={1+B(T)[P, -P_(T)] } pL(T) . (3.29)
where B is the isothermal compressibility factor of the saturated liquid phase.

The density of the vapor phase is obtained as a function of pressure and temperature using

the ideal—gas law:

M
T,Py)=—P, . 3.30
pv( V) RT v ( )

g

Enthalpies of the solid, liquid and vapor phases of the working fluid are obtained as
illustrated in Figure 3.8. The enthalpy of the liquid phase is taken as that of the saturated
liquid phase and is related to the liquid specific heat capacity by:

T
h"(T) = h® + jcg(T)dT : (3.31)

T REF

The enthalpy of the saturated vapor phase is the sum of the enthalpy of the liquid phase and
of the latent heat of vaporization:

h¥(T)=h"(T)+h (T) . (3.32)

By definition, the heat capacity at constant pressure is the partial derivative of the enthalpy

with respect to temperature, so that the vapor specific heat capacity is:

CY(T) :CE(T)+%[hfg(T)] . (3.33)
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Finally, the enthalpy of the solid phase is related to the enthalpy of the liquid at melting
temperature, the heat of fusion and specific heat capacity of the solid by:

Tfus

h$(T) = h"(Tgy) - Hyyy = | c(Mdr . (3.34)
T

A h (T) vapor phase

> T
O K -';US

FIGURE 3.8. Enthalpies of Solid, Saturated Liquid and Saturated Vapor Phases of
Working Fluids as a Function of Temperature.

This section ends the description of the physical heat pipe model. The next chapter
describes in details the discretization of the governing equations and numerical technique
used in HPTAM.
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4. METHOD OF SOLUTION

Simulating the transient operation of heat pipes involves solving a highly non-linear
homogeneous two—phase flow problem, which incorporates the effect of surface tension
and the processes of phase change at the liquid-vapor (L-V) interface. The two-
dimensional Heat Pipe Transient Analysis Model (HPTAM) developed herein solves the
compressible Navier—Stokes equations in the vapor region, and models the liquid flow in
the wick with the Darcy—Forchheimer—extended flow equations. The vapor and liquid
phases are coupled at the L-V interface through the mass, radial momentum and energy
jump conditions. In addition, the evaporation, condensation, sublimation and
resolidification rates are calculated from the kinetic theory of gases to account for the
thermal resistance at the L-V and S-V interfaces. HPTAM geometrically relates the radii of
curvature of the liquid meniscus at the L-V interface to the volume of vapor in the wick,

and simulates pooling of excess liquid in the condenser.

Because of the physical complexity of the problem, advanced numerical methods are
required. In this work, a stable solution technique for simulating transient operation of a
fully—thawed heat pipe is developed, that is accurate and efficient in terms of CPU time.
Various segregated solution techniques are implemented, one based on the non-iterative
Pressure Implicit Splitting Operator (PISO) of Issa (1986), another of the SIMPLEC
segregated iterative type. Their accuracy and computation time requirement are examined

using experimental results for the heatup and cooldown transients of a horizontal water heat

pipe.

The most efficient technique, HPTAM-Revised, is a SIMPLEC-type segregated solution
technique which includes two internal iterative steps to resolve the pressure—velocity and
temperature—velocity couplings and reduce the linearization errors of the kinetic theory
relationship and equations of state. The solution evaluates the volume of the vapor in the
wick explicitly, while the kinetic theory relationship is implicitly coupled with the energy
jump condition at the L-V interface. Other solution techniques examined require using a
small time step size (< 15 ms) to avoid numerical instabilities. On the other hand, a time
step size as high as 500 ms could be used with the HPTAM-Revised technique without
developing any numerical instability. While all solution techniques examined performed
the same in terms of accuracy, the HPTAM—-Revised is 90 times faster than the basic non—

iterative SIMPLE—type approach.
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The selection of the appropriate linear-system solver also affects the efficiency of the
solution technique, particularly when computational grids larger than 10x30 are used. For
example, when solving a typical heat pipe problem using a 20x40 size grid, more than 90%
of the total CPU time is used by the banded Gauss—elimination solver. Calculations
showed that, when the iterative SIS solver is used instead of the banded Gauss—elimination
solver for the solution of the 5-point momentum and energy linear systems, the total CPU

time was only 48% of that for the technique using the Gauss—elimination solver.
4.1. SOLUTION PROCEDURE

The numerical approach selected to solve this highly non-linear and complex problem is
attractive in the sense that it combines the power of the most advanced numerical methods
to date and the advantage of algorithmic flexibility. A summary of the method selected
follows, with some comments to justify the choices made. The theoretical developments
and full justifications are collected in APPENDIX C. To solve the set of governing
equations which describe the operation of heat pipes (see Chapter 3), an unsteady finite—
difference discretization method, based on the SIMPLEC segregated iterative solution

technique, is developed.

Finite—difference methods are simple to formulate, can easily be extended to 2 or 3
dimensions, and require considerably less computational work and storage requirement
than finite—element methods. The use of the unsteady formulation makes it possible to
solve both the steady and transient problems with the same code. When solving the
steady—state equations directly, heavy under-relaxation is usually necessary to resolve the
non-linearities and couplings, and it is easily shown that relaxing the steady—state
equations is equivalent to the transient formulation (APPENDIX C-4).

The governing equations and boundary conditions are discretized on a staggered grid using
the control-volume integration approach proposed by Patankar (1980), instead of the
conventional Taylor series technique. The stability enhancing characteristics of the finite
difference equations obtained by volume integration of the conservative form of the
governing equations, are discussed in detail by several investigators (Patankar 1980;
Harlow and Amsden 1971; and Roache 1982). Lax (1954) and others have shown that
shock wave speed and strength are correctly predicted when the conservative form of the

Navier—Stokes equations is used, and that this is not the case with the non—conservative
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form. The point is that all stable, consistent and conservative finite—difference methods
applied to the conservative form of the equations satisfy the Rankine-Hugoniot relations

and therefore produce the correct jump conditions across a shock.

The final attraction of this integration approach is that it is simple to implement, and the
finite—difference forms can be interpreted as integral laws over the control-volume cell: the
solution obtained using this approach satisfies global conservation, even on a non—uniform
grid. The main drawback of using finite-difference methods is the possibility of
developing a "checkerboard" pressure field. Such spurious pressure distribution is
prevented by using the well-known Eulerian staggered—grid (APPENDIX C-2). On this
grid, the liquid and vapor velocities are determined at the cell boundaries while the other
quantities, such as pressures and enthalpies, are evaluated at the cell center. The harmonic
average of the thermal conductivity is used at the boundaries of the control volumes to

insure continuity of temperature and heat flux at these interfaces.

To resolve the couplings and non-linearities of the flow conservation equations, both direct
solution algorithms and non-iterative splitting procedures have been developed. In
practical problems, however, a direct solution technique would require a very large amount
of computer storage and time (Beam and Warming 1978), even when specialized sparse

matrix solvers are employed.

Non-iterative splitting procedures have been considered to speed up calculations and
reduce the complexity of programmation as well as storage requirements (APPENDIX C-
12). Originally, these methods have been applied to solve multi-dimensional problems as a
series of linearized one-dimensional problems (Alternating Direction Implicit
approximations). Unfortunately, it was found that such spatial splitting methods have a
rather poor accuracy for disturbances which propagate skew to the coordinate axes. This
suggests that a more productive approach would be to split by physical phenomena instead,
as it is done in the Marker—And—Cell (MAC) formulation and projections algorithm. It is
therefore desirable to use segregated iterative solution techniques in which the velocity

components and pressure are calculated in a sequential or segregated manner.

Most modern iterative numerical methods used to solve the unsteady compressible flow
equations, such as the SIMPLE—-type procedures (APPENDIX C-5) and PISO (Pressure—
Implicit with Splitting of Operators), are based on the Marker—And-Cell (MAC) method
(APPENDIX C-12). They make use of the staggered grid and deduce the pressure field
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from a Poisson equation obtained by combining the continuity and momentum conservation

equations.

Harlow and Amsden (1971) have extended the MAC method to the solution of the
conservative form of the unsteady compressible flow equations. The advanced-time
density was linearized in terms of the pressure by using the equation of state, and
procedures similar to the SIMPLE-type techniques were derived to resolve the pressure—
density~velocity couplings. The Implicit Continuous—fluid Eulerian technique of Harlow
and Amsden (1971) is suitable for arbitrary equation of state and proved successful for all
Mach number.

The SIMPLE-Consistent (SIMPLEC) algorithm of van Doormaal and Raithby (1984) uses
a consistent simplification of the momentum correction equations and does not require any
pressure under-relaxation (the off-diagonal velocity corrections appearing in the
diffusion/convection terms are equated to the diagonal velocity correction). When diffusion
and convection phenomena are dominated by pressure gradients and source terms, the
consistent approximation in SIMPLEC becomes exact so that this procedure should be
used. This applies to flow systems with large pressure gradients such as flows in porous
media and heat exchangers. Also SIMPLEC is easy to program and performs as well or
better than SIMPLER in terms of CPU time and storage requirements.

Since these modern segregated iterative solution techniques are extremely modular in
nature, it is a relatively simple task to test possible variations of the algorithm. Any basic
iteration is made of several sequential steps:

(a) momentum predictor step : best estimates of the pressure gradients are calculated

explicitly, and the momentum conservation equations are solved for the velocity field.

(b) pressure corrector step : a simplified (corrected) form of the momentum

conservation equations is used to implicitly relate mass flow rates and pressure gradients;
the mass flow rates are eliminated in terms of pressures in the continuity equations, and
densities are linearized using the equations of state; the resulting Poisson equation is
solved for the pressure field.

(c) energy or enthalpy predictor step : best estimates of pressures and convective

fluxes are evaluated explicitly, and the enthalpy conservation equations are solved for the

temperatures.

(d) properties update : the thermophysical properties are updated, particularly

densities, which are calculated using the equations of state.
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While these basic sequential steps are suitable for monophasic fluid flow problems, they
must be modified to solve the more complex two—phase flow coupled problem, that of heat
pipe. During the pressure corrector step, liquid and vapor volumes around the L-V
interface are treated as functions of the wick void fractions. The void fractions are
linearized in terms of the cosines of the contact angles using the geometrical Equation
(3.22). The latter are implicitly related to the liquid and vapor pressures at the L-V
interface through the radial momentum jump condition or extended Pascal relationship
(Equation 3.15). The kinetic theory Equation (3.23) is used implicitly to relate the
evaporation/condensation mass fluxes and the pressures at the L-V interface. The
densities, evaporation/condensation mass fluxes, and radii of curvature of the liquid

meniscus for the advanced time are then obtained, with the pressure corrections.

The predictor steps are stabilizing steps for the convective and diffusive terms. The
momentum equations are solved for velocities, while the enthalpy equations are linearized
and solved for temperatures and evaporation/condensation rates by implicitly coupling the
interfacial energy jump condition (3.18b) and Equation (3.23) at the L-V interface. To
decouple the radial and axial momentum conservation equations, the convective mass
fluxes, the divergence of the velocity field and the cross—derivative viscous terms are
evaluated explicitly from the previous step. These cross derivative terms are not important
for the stability of the solution (Beam and Warming 1978). If the explicit differentiating of
these terms imposes any limitation on the time step, this fact has been masked by more

restrictive conditions due to convection, diffusion or strong non-linearities for example.
4.1.1. Definition of Domain, Variables and Extrapolations

The physical domain is divided into a two—dimensional cylindrical grid (r,z) of (Nr+1) by
Nz cells. Since azymutal symmetry is assumed in the cylindrical heat pipe, only half of the
vapor core is modeled with cells (i=1) through (i=Nv), as shown in Figure 4.1a. The
liquid-wick region is represented by cells (i=iL=Nv+1) through (i=NL), and the pipe wall
is modeled with cells (i=NL+1) through (i=Nr). The coolant flow in the cooling jacket
along the condenser section is represented by a column of cells (i=Nr+1), as shown in
Figure 4.1b. In the axial direction, the evaporator section extends from (j=1) to (j=Nevap),
the adiabatic section from (j=Nevap+1) to (j=Nadia), and the condenser section from
(=Nadia+1) to (j=Nz). The dimensions of the cell (i,j) are AR; and AZ; , while Rcell; and

Zcell; are the coordinates of the center of this cell (Fig. 4.2). The surface areas of the sides
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of cell (i,)) are Air'j, Air"l’j, A;’H and Aiz’j in the radial and axial directions, respectively.
The volume of the cell (i,j) is Voli. The denomination "cell" refers to the mass balance
cell. On the staggered grid, densities, pressures, temperatures and enthalpies are defined at
the center of the mass balance cells, while velocities and mass fluxes are defined at the
center of the faces of these cells (the latter holds for wick void fractions and cosines of
contact angle as well, but along the L-V interface only). The momentum conservation
equations are integrated over the momentum cells surrounding the velocity components
(Figures 4.2, 4.3 and 4.4). Bir‘j, BirH’j, and BiZ are the surface areas of the sides of the
radial momentum cell (i,j), whose volume is VolJ. Xir_l’j, Xir’j, and AiZ are the surface
areas of the sides of the axial momentum cell (i,j), whose volume is Vol,J. These
volumes and areas can be expressed as:

A =21RAZ; , A,=n(R?-RL,) ,

Bir'j =2nReeljAZ; Biz = n(Rcelli2+l - Rcell?) ’

y o 4.1
X:."' = TERI(AZJ + AZj+l) 3 \/0]1'J = AIZ AZJ f ( )
. . . . AZ.+ AZ. 1
Vol) =B; AZ; , VOI'Z'J=A‘Z—J—2—L
z
A 'i,j+1
Z(j) i
A
Zeell(j i1 i .
cll) 157 o U5 @i+l |AZ()
L}
Z(-1) 1j-1 V’
< AR()
. > r
R(G-1)  Reelli)  R()
FIGURE 4.2. Grid Layout for a Mass Cell.
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The densities, pressures, enthalpies, and heat capacities are extrapolated at the velocity
locations using weighting factors, ¢; and @}, such that:

Pir'j = q)irpi,j +(1 —(Pir)piﬂ.j ’

L . (42)
Pz = @3pij + (1= 03D s
The mass fluxes and velocities are then related by:
G, =p/U,,and G,=p,U,. 4.3)

Other extrapolations are necessary to evaluate the convective mass fluxes at the faces of the
radial (Gry, Grz) and axial (Gz;, Gz;) momentum cells. By construction, Gg; and Gz,
are located at the centers of mass cells (densities locations), while Gg; and Gy, are located
at the vertices (grid intersections) of the mass cell grid (Figures 4.3 and 4.4). These

extrapolated mass fluxes are expressed as:

i
AzLEFTj (A,G,) +(1 _ AZLEFT

Z

i
J (A"Gr)l_LJ ’

Ll
Br GRr ‘(
z

Gk, =G, +(1-1)G;™,

X164 =3[(A6) (a0, 7]

2
Gyl = %[G'ZJ + Giz'j_l] , where
_ (4.4)
AZLEFT' = n(Reell? -R,) ,  and
i AzLEFT' i AZ,
¢ =l-—=, o@j=—1—

These extrapolations are derived so that conservation of mass in the mass cells insures

conservation of mass in the radial and axial momentum cells.

UrCELL;j and UzCELL;; denote the extrapolated velocities at the centers of mass cells
and are given by:

GRr; GZz,
UrCELL;;=— , and UzCELL;;=—" . (4.5)
Pi.j Pi.j
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The superscript (n) is used to reference the variables at the old time step t, =ty + nAt,
such as: P",p", T", Tint", h“,G”,é",ag,ug,Voln,ﬁ“, which represent in order of
appearance pressure, density, temperature, interfacial temperature, enthalpy, velocity field,
mass flux, wick void fraction, cosine of contact angle of liquid meniscus, mass cell volume

and evaporation/condensation mass fluxes. In the same manner, a superscript (n+1) is
used for the variables at the new time step t,,; =t, + At, while a superscript (*) refers to

the best estimate of the new—time variable available at the time of the computation. Since
the formulation is partially implicit, the factors a, 8 and , which vary between 0 (explicit)

and 1 (fully implicit), are introduced such that the tilted intermediate—time variables are

defined as:

Tint" =aTint +(1-a)Tint",
Gn+1 — Gn+1 +(1- Gn’
r Vo, (1-y)G, 4.6)

~n+l

artt=ep + (1-e)ul,
P =0P" + (1-0)P".

The factor o is used for temperatures and enthalpies, y for densities, velocities and mass
fluxes, while 8 is used for the other variables such as pressures, wick void fractions and

cosines of contact angle. Finally, the Delta notation is defined as:

AP =p"tl_p"  and AP =P  _P",

. . . 4.7)
sothat P =6P +(1-0)P" =P" +0AP

Now, given a stared best estimate of a new—-time quantity, for example the pressure (P),

we seek a primed correction field (P') such that:

Pr+I=P*+P" (4.8)
4.1.2. Discretization of the Conservation Equations
The mass balance, momentum and enthalpy conservation equations are integrated over their

respective control volume (mass cell, radial and axial momentum cells, and mass cell,

respectively), using the Gauss theorem and Green's formula (Delhaye 1976):
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jj div(U)dV = ﬁﬁ-NdA , (4.9a)
Vol oVol

and

[[[(0 #¥P)av = [[[[div(PO) - Piv(T)|av

Vol (4.9b)
_ ﬁpﬁ e NdA - deiv(fJ)dV :
oVol Vol

where dVol denotes the surface of the volume Vol and N is the outward unity vector

normal to this surface.

In the following, any omitted grid subscript/superscript must be taken as (i,j). The next
subsections describe the discretization of all the governing equations and their associated

jump conditions and boundary conditions.

4.1.3. Homogeneous Enthalpy Equation in the Porous Wick

During the enthalpy predictor step of the solution procedure, the liquid and solid enthalpies
in the enthalpy conservation Equation (3.27) are linearized in terms of temperature using
the heat capacities of the phases (Figure 4.5). Also, the frozen volume fraction ¥ is related

to the cell average temperature T according to Figure 4.6 (Beckermann and Viskanta
1988). The three types of cells are:

(a) solid cell, where T < (Tgys-0T), y=1, and 0y/0T =0.
(b) mushy cell, where (Tgys-0T) £ T < (Tgys+06T), 0<y<I, and dy/dT = -1/(28T).
(¢) liquid cell, where (Tgs+8T) < T, Y=0, and 0y/dT = 0.

Integration of Equation (3.27) over a control volume (i,j) leads to the following discretized

form of the enthalpy conservation equation:
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i{Vo]*[(l =y )ph); +¥"(ph)s] - VoI"[(1 = ¥")(ph); +7"(ph)3 ]}

]* * * * * * * 8 ) ,
200+ +[ons - ow 2 I

(4.10)

where I'; and I'; represent the convection—diffusion enthalpy fluxes across the faces of the

-\ wisFLOOD
9J), WJ

mass balance cell (i,j)). The power loss term for liquid cell (iL , accounts for

the enthalpy of the excess liquid pooling into the vapor core. The second member of
Equation (4.10) is calculated explicitly using the most recent stared pressure and velocity

fields. The derivatives and divergence term at the mass cell centers which appear in the
viscous dissipation @ (see Equation (3.5) are discretized as:

1, _ i—-1,j i,j _ i,j=1
9. _9 "9 99, | _9, 79,
o |, AR. oz . AZ. ’

‘ ) (4.11)
UrCELL.: .
and div(c’j)_ = {aqr} + L N I:aqz}
1) . ..
L) L)

or Reell; oz

The cross—derivatives at the mass cell centers are approximated using the following

second—order accurate formulations:

Lj(UrCELLi, jo1 ~UrCELL, ;) + @} (UrCELL, ; - UrCELL, ;_,

[aaiJ _ o — . (4.12a)
Z Jij E(1+co;)(Azj+AZJ._1)

—L(UZCELLH,‘ ;— UzCELL, )+ ®}(UzCELL, ; - UzCELL, _, ;)

[%} =2 — . (4.12b)
i 5(1 +o, (AR, + AR, )
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AR; + ARy and AZ;+AZ;,,

where (x)"r = 0 = ————
AR, + AR, AZ;+AZ;_

(4.12¢)

Equations (4.12) reduce to the well known centered approximations when the grid is

uniform. In the boundary cells, the following one—sided approximations are used:

'aqr} _ UrCELL;, {z& } _ ZUrCELL; n,
L aZ i1 AZ] /12 ' aZ i.Nz AZNZ /2 ’
r —UzCELLy, ;
aUz:l 0 . [aUz} et VA R (4.12d)
L ar 1.j ar Nv,j ARNV /2
3q, ] _ UzCELL [aqz} _ TUzCELLyy,;
L ar iL.j ARiL /2 ar NLj ARN] /2

The viscous dissipation term in Equation (4.10) is calculated explicitly as:

2 2 2 2
UrCELL; . 2
ol =2y, aq, | | ZF i | 99| L 19 99, —l[div((])]
L) or i Reell; 0z 2|0z or |.. 3 i,

i, i,

(4.13)

In Equation (3.27), enthalpies were linearized in terms of temperatures using the heat

capacities at constant pressure Cp, according to Figure 3.8:

™! =h"+C T’ (4.14)

A very small 8T must be used to simulate the phase—change of a pure substance. When 8T
is small, the y-T relationship closely approximates a step function (Figure 4.5), and many
schemes using the enthalpy formulation have experienced numerical difficulties and
predicted wiggly temperature time histories (Beckermann and Viskanta 1988; Cao and
Faghri 1990b; Cao and Faghri 1993a). The present numerical solution, however, uses a
ST as small as 10-8 K (limited by machine accuracy), without under—relaxation of the
temperature and numerical instabilities. The transitions between the different phases are

recognized and treated as follows:
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FIGURE 4.5. Variation of the Fluid Frozen Volume Fraction with Temperature.

(a) when the calculated solid fraction ¥* >1, the model declares a transition from a
mushy to a frozen cell, and sets Y* and dy/dT equal to 1 and 0, respectively.

(b) when the calculated solid fraction ¥* <0, the model declares a transition from a
mushy to a liquid cell, and sets y* and 3y/dT both equal to 0.

(c) when ¥* =1 and the calculated temperature T*>(Tfys-8T), the model declares a
transition from a frozen to a mushy cell, and sets T* = Tg,s-0T and Jy/dT =
-1/(287).

(d) when ¥* =0 and the calculated temperature T*<(Tfys+6T), the model declares a
transition from a liquid to a mushy cell, and sets T* = Tgys+6T and 0y/0T =
-1/(28T).

Many numerical schemes have been developed to discretize the convection—diffusion
enthalpy fluxes appearing in Equation (4.10), such as central difference, upwind
difference, hybrid, exponential, power-law (Patankar 1980) and weighting function (Lee
and Tzong 1991) discretization schemes (APPENDIX C-1). The use of the central
difference scheme is restricted to the treatment of low Reynolds number flows, because a

numerical instability occurs when the convective transport dominates the transport by
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diffusion. The upwind and hybrid difference schemes are unconditionally stable, but
suffer from severe false numerical diffusion. The exponential sheme developed by
Patankar (1980) is applicable to solving equations of conservative form and to the case of
uniform thermal conductivity; it is unconditionally stable and performs well in flow
regions in which the velocity field aligns closely with the mesh lines. In this scheme, the
effects of convection and diffusion are treated separately, and the exponential function is
employed to incorporate the effect of fluid flow. To account for the effect of variable
thermal conductivity, Patankar (1980) combined the exponential scheme with the harmonic
mean scheme. He matched the heat fluxes at the interface between grid cells to obtain the
"average" thermal conductivity at this location. Finally, the power-law difference scheme,

which is only an approximation of the exponential scheme, reduces the computation time.

The new weighting function scheme of Lee and Tzong (1991) is applicable to both
conservative and non—conservative equations and can be implemented on non—uniform
grids, an improvement from their former scheme. When applied to the solution of
conservation equations, the weighting function scheme reduces to Patankar's exponential
scheme in the case of uniform thermal conductivity. A number of higher-order difference
schemes (such as QUICK) have been developed also, which have higher accuracy and
minimal false numerical diffusion. These schemes, however, are only conditionally stable,
more complex to implement, and more CPU time intensive, as they require the solution of

unusual nine—point linear systems.

Since heat transfer in the wick is dominated by diffusion, the central difference
discretization scheme is appropriate for such a situation and is implemented in the
homogeneous enthalpy equation of the present model. By contrast, Cao and Faghri (1990b
and 1993a) adopted the upwind difference scheme in their numerical solution, which is
unconditionally stable but suffers from severe false numerical diffusion, particularly when

heat transfer is dominated by conduction. Therefore, the convection—diffusion enthalpy
fluxes [} and I'; are expressed as:

(F)5 = (G2, (07, + @R

1,j ij 1]

()5 =(63), )+ @

i.j ij

(4.15)

where the enthalpies are extrapolated at the velocity locations as:
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(h"“):j = @i+ = ehhlL
' (4.16)
n+1\2 _  jrn+l )] hn+1
(1) = e+ -l

z'.j

The large numerical error and sometimes poor stability characteristics and convergence
rates of existing fixed-grid enthalpy formulations are caused by improper handling of the
evolution of the latent heat and discretization of the convection-diffusion enthalpy fluxes
appearing in Equation (3.27). The use of the conventional harmonic mean scheme of
Patankar (1980) to estimate the heat fluxes at the boundaries of the mushy cell is largely
responsible for the loss in accuracy and the generation of wiggly temperature time histories
(Lee and Tzong 1991). The larger the change in thermal diffusivity of the working fluid
upon melting, the worse are the results. Indeed, the thermal diffusivity of the solid phase
is quite different from that of the liquid phase for most materials. For instance, the solid—
to-liquid thermal diffusivity ratios (os/ot ) for working fluids of common use in heat pipes
are 1.60 (lithium), 1.27 (sodium) and 1.85 (potassium). The thermal diffusivity ratio for
pure water is as large as 7.45. Because Cao and Faghri (1990b and 1993a) employed the
conventional harmonic mean scheme of Patankar (1980) to estimate the heat fluxes at the
faces of the control volumes, their numerical scheme suffered from the inaccuracy
described above, particularly when they used a small 8T. Their model would give
reasonable (but inaccurate) front locations and temperature time histories when 8T is large,
since these authors calculated the thermal conductivity in the mushy cells as a linear

function of the solid and liquid thermal conductivities.

The model developed by Raw and Lee (1991) for convection—diffusion change—of—phase
problems uses a modified weighting function scheme to handle the sharp viscosity and
thermal diffusivity jumps at the liquid—-solid interface. Unlike other existing fixed—grid
enthalpy formulations, their numerical technique produces smooth streamlines and
isotherms, even in the vicinity of the change—~of—phase front. However, it is increasingly
complex and requires larger computation time. The volume fractions (or dimensionless
latent heats) of liquid in the control volumes are related to the node temperatures (or
dimensionless sensible heats) in a complex manner when dealing with a two— or three—
dimensional problem (Lee and Tzong 1991). This strong coupling necessitates the use of
an iterative procedure and a small Successive Over—Relaxation (SOR) factor when solving

the discretized enthalpy equations for temperatures.
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FIGURE 4.6. Numerical Grid Layout in the Vicinity of the Solid-Liquid Interface.

In the present work, a simple method is developed to evaluate the heat fluxes at the
boundaries of the mushy cells, based on a one-dimensional analysis estimation of the
location of the change—of-phase front. Consider a typical grid layout in the vicinity of the
melting front, as depicted in Figure 4.6. The heat fluxes are evaluated at the interfaces of
the numerical cells, and the discretization scheme depends on the types of the cells adjacent
to the interface (mushy, liquid or solid). Considering the radial heat flux between the
mushy cell (i,j) and the monophasic cell (i+1,j) in Figure 4.6, the radius of the melting

front, u, is approximated as:

u=+/(1-H)R:, +fR? , (4.17a)
where

f=

Yii—Yin| - (4.17b)

The radial heat flux at the interface (i,j) between the cells (i,j) and (i+1,j) is expressed as:
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erJ — Dir‘j(Ti,j _Ti+1,j) , (4.18a)
where

ff
kst ).
ij_ ( Sm/ic1

" AR, /2+R,-u

(4.18b)

The strong dependence of Dy upon ¥;; is taken into account by discretizing the heat flux

using the following Taylor series:

Q)™ = Dy(Ty = iy )+ Dy(Ty = Tio )

oD, du of OY; . (4.19a)
+ - i J(T 1+1,j)Ti,j
du of i,

where the partial derivatives of the right-hand-side of Equation (4.19a) can be expressed

as:
2 2 _p2
a§>r T %:RizRH’ and
! (ksm)1+l.j !
of « X
——= 1 when Yi+],j =0 (f:YI,]) . (4]9b)
i
of

=1 when vyi,;=1 (f=1-7]).

9Yi,j
The heat flux in the axial direction between the solid cell (i+1,j) and the mushy cell
(i+1,j+1) is calculated in a similar manner. The axial location of the melting front, v, is

obtained from:

=(1-9)Z;, +8Z; . (4.20)

where

g= Yrﬂ,j - Yi*+1,j+1 - (4.20b)
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The axial diffusion coefficient, D,, has the following expression:

£
kSt )
i+l _ ( Smitt,

= AZ24v-Z,

(4.21)

Finally, the axial heat flux at the interface (i+1,j) is discretized using the following Taylor

series:

i+1,j\n+] _ * ot . o ‘
Q)™ =Dy(Tipj = Tiwtj+1) + Do(Tinyj = Tigr ju1)

oD, dv  dg &Y:‘+|,j+1 T T T (4.22a)
+ v 9z My T (Tivr; —Tirnjs D Tivnjn
1+l,]+
where
2
B;Dz —— e:f)z , g_v:_AZjH’ and
Y (ksm)i+1,j &
ag * *
Y I when ¥i4;=0 (8=Yi1j0)> (4.22b)
i+1,j41
og

——= —=—-1 when 'yf =1 (gzl—yTk Li+l) -
it T T

In the two other cases of the heat flux between two monophasic cells, and between two
mushy cells, the conventional harmonic mean scheme of Patankar (1980) is used. For
example, the axial heat flux between the solid cells (i+1.,j) and (i+1,j-1) of Figure 4.6 is
discretized as:

@ hm! = DizH’J—I(TLl,j—l - T:+l,j + T'i+1,j—] - Tli+],j) , (4.23a)

where the diffusion coefficient, D, is given as:

-1

i+1-1 _ ]

DIt =2 ] +( — : (4.23b)
i+1,]

Sm
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The heat flux between the mushy cells (i,j) and (i,j-1) of Figure 4.6 is calculated in a
similar manner, except that the effective thermal conductivities of the mushy cells are
calculated using the parallel model (see APPENDIX A, Equation A-45):

kf.gf :Y:,j(kgxfag)i,j +(1 —Y?,j)(kifr;)i,j : (4.24)

Similar treatment is applied to the discretization of the heat fluxes at the boundaries of the
wick cells. Even though the derived procedure is based on a one-dimensional analysis of
the melting front location, it is quite capable of predicting the shape of the liquid—solid
interface of truly two—dimensional problems, as will be shown in the solution benchmark
section of the thesis (Chapter 5).

4.1.4. Heat balance at the Liquid—Vapor Interface

Making use of the no—slip condition at the L-V interface and neglecting the Marangoni
effect, the enthalpy jump condition (3.18a) reduces to:

Fv_fL =(QrV +F~'n‘hv)—((~)rL +%hL):Af, , (4.252)
where
=3 v L.
Af, =) L - L m z{u_v oU; _ w9V, }ﬁ _ (4.25b)
(gpL) py | 2 py dr gp, or
The conductive fluxes in Equation (4.25a) are discretized as:
Qy = D:/[TNVJ - Timj] , and
- L[~ . (4.26a)
Qr = Dl' [Tln[J - Tll,_] ] .
where the diffusion coefficients are:
2Ky 2k
DY=""T%1 | and D= | (4.26b)
ARy, AR,
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Finally, the enthalpies hl and hV in Equation (4.25a) are evaluated explicitly at the
saturation temperature of the vapor Tsat(f):,) .

4.1.5. Coupling of Enthalpy Jump Condition with the Kinetic Theory
Relationship

In the first algorithms tested (Algorithms A and B), the evaporation/condensation mass
fluxes in the energy jump condition Equation (4.25a) are evaluated explicitly, from the best
available estimates. Because of the sensitivity of the evaporation/condensation rates to the
interfacial temperature 7int, the stability of the algorithm is enhanced by implicitly coupling
the kinetic theory relationship and the energy jump condition in Algorithms HPTAM-PISO
and HPTAM-Revised.

The evaporation/condensation mass fluxes are governed by the kinetic theory, Equation

(3.23). For convenience, this relation is rewritten here as:

m, = ﬁ[f)m ~ Py (Tint;)]| = ¥(Tint; Byy ) (4.27a)
where
1/2
B= acc[%J : (4.27b)
g

Equation (4.27a) is linearized in terms of the interfacial temperature corrections as:

Tk

Z.n+l ]

mt =) +o T Tint;, (4.282)
where

i, = ¥(Tint], Py, ). (4.28b)
and
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¥ B dPsm(Tintf) — P;V‘.-Psa(Tintf)
aTirJn__”I“int; dT STt J2\/’I“itnt; |

(4.28¢)

The right-hand side of the enthalpy jump condition Equation (4.25a), a polynom in m, is

linearized (the coefficients in squared brackets appearing in Equation 4.25b are evaluated
explicitly) as:

5 oV .
AT = ABXP L g AMPY — ) Tint. | | where
r J J 1 9Tint )

AY*® = (COEF, + COEF;)m; ., A'MP = COEF, +3COEF; ,

*
~ %

* ~*j. U’)Nv—l,j ¥ ﬁ?j‘_(t)mﬂ,]‘
COEFI:2[¥) o ¥ 2[%) L * 420
Y Nv,j Nv Ep iL,j ARiL (4.29)
% 2
m.
and COEF; = *1 — . (™)

EﬁiL,j)z (f)}:lv,j)

The enthalpy jump condition (4.25a) is implicitly discretized and rewritten as:

- - ~ n+l - ~ n+l -
ry-rt= (Q)’ +ﬁhv) -(Q,L +mhL) =AM (4.30)

By using Equations (4.26a) and (4.28a), the radial energy fluxes at the L—V interface are
discretized as:

v . - - : .
V| = - v V[a* - \% -
I, :!mj +o{aTi:“T1nthhj +D, [TNVJ —Tmtj]+0tDr [TNV,J- —Tmtj]

(4.31)

~ o . - - Co
L —_* . L L . K * L .

The substitution of Equations (4.29) and (4.31) into Equation (4.30) allows to express the

liquid interfacial temperature corrections in terms of temperature corrections for the mass
cells as:
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aTint; = AINT;[aT;_j]+BINT [aTy, ;| + CINT; , where

AINT, =

CINT; =

Dy

, BI
DINT

i
)
i

DINT

A%
NT. = D,
! DINT;

y

~hE)+ DY Ty - Tint] )+ DE (T - Tint}) - 45 @3

et

0¥
_pLanV_ %Y (LY L AIMP
DINT,; =D} +D; aTim(hJ hj — AMP)

and

Equation (4.32) is used to eliminate the interfacial temperature corrections in Equations
(4.31), so that finally the radial energy fluxes at the L-V interface can be expressed in
terms of temperature corrections for the mass cells only as:

(rY );‘” = AINT} [oT;,_;|+ BINT} [oTy, ;] + CINT)

(f%)?n: AINTHOLT;LJ]-FBINTHOLT'NVJ]+CINT}‘ . where

o o
AINTY =|hY —_ -DY |AINT, , BINTY =|hY —X DY [BINT. +D" ,
) ) 9Tint ' J 1 Y 9Tint T yoor
CINTY ——hV aquk ~-DY [CINT +m*hV+DV(’r* —Tim*)
TN ST j T m;h; r {1Nv,j i) o
AINTE :_h-LL\Pj+DL—AINT~~DL BINTE =| hl a~; +DL |BINT.
] J oTint T g J } oTint ' I
- S ) (4.33)
¥’ . N
L _ L ] L —=* L L .k *

Finally, the interfacial convection—diffusion energy fluxes in the discretized enthalpy
conservation Equation (4.10) are expressed as:

~ \n+1 ~ y\n+1 ,
(l"r) = (Fr ) for the mass cell (Nv, j), and
N : (4.34)
(f" )nH = (f"l‘)nH for the mass cell (il, j)
TINvV.j rJj e
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Note that in the model the vapor is assumed to be saturated so that there is no need to solve
the energy conservation in the vapor region. In that case, the radial conduction flux in the
vapor is neglected in the interfacial enthalpy jump condition (Equation 4.30), which results
in zero BINT, BINTY and BINTL coefficients. From Equation (4.33), it can be seen that
the interfacial convection—diffusion energy flux on the wick side becomes an implicit

function of the wick cell temperature correction only.
4.1.6. Modeling of the Condenser Cooling Jacket

For the case of a condenser cooled with a water jacket, a column of cells (i=Nr+1) is added
to model the water flow in the jacket (Figure 4.1b), which extends from (j=Nadia+1) to
(j=Nz). The flow enters the jacket with a constant mass flow rate M! and temperature
Tinl. Properties of the cooling water (density pJ, heat capacity CpJ and thermal
conductivity kJ) are assumed to be constant. For a cooling water cell (i=Nr+1), the
discretized Equation (4.10) reduces to the following form (the jacket is thermally insulated

externally):

Vol

T TR s T, <o e

Introducing the convective heat transfer coefficient HY and the jacket inner wall temperature

TW, the radial energy flux at the inner wall can be expressed as:

R o A Taei=T) _paw s
(), = (@) :kNijm:Hj(T' -Ti5) (4.36)

The equality in Equation (4.36) is used to eliminate TW in the radial energy flux so that:

-1
~ I ~ ~
(rr)"f: ARNMFLJ [T;‘_ﬁ‘j—T;‘;“ . (4.37)
Nej o | 2k, HI 3

Since heat transfer along the cooling jacket is dominated by convection, the convection—
diffusion energy fluxes I'; across the faces of the jacket cells are discretized using the

upwind difference scheme (Patankar 1980) as:
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*

~ 1 - ) . e .
(AZI"Z): =m'h- Azk% = ﬁ’[(h’ )i’j +0CIT, J}+ Al D;J[T{{j“ - Tﬁjj,], (4.38a)

where the diffusion coefficients are defined as:

. ]
Dl = 2k _ (4.38b)
AZ;+AZj,)

At the entrance of the cooling jacket, the axial energy flux is expressed as:

- 1 - T _ C .
(Azrz)'_1+ =milh - Ak 9L = 5h! (Tin') + AL DN [ Tin! - TMgi01 ] (4.392)
i,Nadia 0z

where the diffusion coefficient at the entrance is:

- ]
piNadia — . S (4.39b)
AZNadia+l 12

Finally, the axial energy flux at the exit of the cooling jacket is expressed as:
~ \n+] oy~ . * :
(A,L,) =d'h= m![(hl)i L aCLTi,Nz:| . (4.40)

4.1.7. Thermal Boundary Conditions at the Walls

In the case of a cylindrical heat pipe, the vapor centerline boundary (r=0) is a line of
symmetry. Also, the heat pipe end caps, z=0, and z=Z(Nz), are thermally insulated
(Figure 4.1a), so that:

(F.)"=0 , ana (F)7=(F,)" =0 . (4.41)

0. i.0

The radial wall boundary condition (IV) delineated in Figure (3.1) can be either isoflux,

isothermal, radiative or convective, and is applied independently in the evaporator,
adiabatic section and condenser. In this subsection, i=Nr and AX stands for ARj/2. The

radial energy flux leaving the wall cell (i,j) by conduction can be expressed in terms of the
outer wall temperature TW, as:
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n+l T?}-I - TJW
,)i'j W (4.42)

a. Isoflux thermal boundary condition

- 1
In the case of a given radial thermal energy flux, (I“r)nJr is simply equated to its specified
ij

(explicit) value.

b. Isothermal boundary condition

In the case of a given outer wall temperature TW, Equation (4.42) is used as it is to express

the radial thermal energy flux.

¢. Radiative boundary condition

In the case of a radiative boundary condition, we have formally:

~ \n+l TF;I—TJW ~ w4 4
(rr)i’j =k :(oeF)md[(TJ ) —Tsp} : (4.43)

In order to eliminate TW in the radial energy flux, we must linearize the right—hand side of
Equation (4.43). Because of good thermal conductivity of the container metallic material,

the temperature drop across the wall is relatively small, so that we can write:
- W, s
T=T;;-T" (T;; . (4.44)

To a first approximation, this gives:

() =, - - (Ti’j)“[l -f_T] - (fuf[l _4;‘1] s

If this approximation (Equation 4.45) is used to eliminate the fourth power of the wall

temperature in Equation (4.43), we find that:
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Kii a3 )
[ " +4Ti,j(csF)md]6T (0€F) o[ TH; - T ] (4.46)

so that the radial energy flux at the wall can be expressed as:

-1
(r,)"+ = S T [T;‘j -Th| . (4.47)
] (0€F) .4 kij = ’

Equation (4.47) is linearized around the best estimate T;

i,j in terms of temperature

corrections:
T - T, AX 2t Y
(T, = =% & | DENOM™T} | - 3=2(T14 - T ) || =2+ | [oT} ]
i DENOM’ k, DENOM '
! (4.48)
where DENOM’ = ! +4 ax Tri’
(0eF) g ki

Finally, the energy conservation discretized Equations (4.10) can be written in terms of the

mass cell temperature corrections in the following form:

aPl [T +aE] T, +aW] T, . +aN] T, +aSTT S (4.49)

T

for i=1 to NrMAX, and j=1to Nz (NrMAX=Nr+1 for the case of a condenser cooling

Jacket, Nr otherwise). We obtain by construction:

aW/ =aN[, =aS/ =0 ,

T o .
aEymax; =0 for j=Nadia+1 to Nz, (4.50)
aEy,, =0 for j=1 to Nadia, and

aSy,. | naans) =0 for a cooling jacket

Equations (4.49) are solved for mass cell temperature corrections using the very efficient
iterative Strongly—Implicit-Solver (SIS) (see Section 4.3). The interfacial temperature
corrections are then computed from Equations (4.32), and the new tilted

evaporation/condensation rates are obtained from Equation (4.28).
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4.1.8. Radial Momentum Conservation Equations

After multiplying Equations (3.2) by the porosity €, integration of these equations leads to

the following discretized form:

vol, [p U™ -prur] + DIAGTU™
- n+l - - +1 (4'51)
+(BrFRr)i+’.j—(BrFRr)iJ +(BZFRZ)L_ (Br )j = EXPLY ,
where
5 e div 4iv(0)]
EXPLIJ'—EVOI p F PH»]) Plj _gv [u 1V ]1+lj [}‘l lV ]l.j
7 (AR, +AR))/2| 3 T (AR,,, +AR,)/2
Ul+lj Ulj i Oi+],j—l _ Gi,j—l
| Wil (AR,,, +AR;)/2 ~Hvarx (AR, +AR;)/2 |
and

-u

r

zZ, Reell
dv—z _[dz j =(21AZ;) Log, T

Vol Z,, Reell, 1

DIAG”:EVOI[ i]+2u[m ) with

Vol

Rcell

The magnitude of the mass flux at the radial velocity location (i,j) is consistently

extrapolated as:

2 o, N 2
- \/[Gr]lJ +{@:—(GZZ)” +(1- (plr)(GZZ)iH,j:l . (4.52)

- i,J
~ %
G

T

At the velocity locations, the dynamic viscosities are extrapolated as follows:

ii  AR; +AR;, AZ. +AZ;
i,j_ Lj_ J J+1
M= AR, AR oand WS SR AT, (4.53)
—+—
Hi H1+1,J Hij  Hijn
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The dynamic viscosities at the grid vertices are given by:

AZi+AZj,, . . .
uVRTX = Z—Z———A—Z—J—H— inside the domain, while
e
MVRTx =R s MVRTX =M BRI = Hp s (4.54)

and u(\),’lj{urx =0 on the grid boundaries .

The last identity holds for a cylindrical heat pipe since there is no shear stress along the
vapor centerline (symmetry axis).

It has been long known that, though not detected by von Neumann stability analysis, a
behavior very much characteristic of numerical instability can occur if the choice of grid
spacing permits the convective transport to dominate the diffusive one (early fluid codes
were limited to low Reynolds numbers). This physical implausibility has been identified
by Patankar and Spalding (Patankar 1980) as the positiveness of non—diagonal coefficients
of the matrix. The same authors refer to their proposed remedy as a high lateral flux
correction. While the much used donor cell representation is numerically dissipative, the
high lateral flux correction is derived from the exact solution of a theoretical steady—state
one—dimensional flow with constant properties, and is physically more satisfactory (see
APPENDIX C-1). In this work, the convection—diffusion momentum fluxes I'r; and I'r;
across the faces of the radial momentum control volumes are discretized implicitly using the

power law approximation of the exponential scheme of Patankar (1980) as:

(Rl =00 o= {6 [or " e rean(ee) oyfor - 0]
(Fu) =26,0,- n aafi = 1(Gi) [0 [+ reaT(pey) D[ 00 - O

o, (G
o tH Pe',y_l( )’ , and
" AR, ' Dy
. (4.55)
Lo ul\}J}ITX Pei,j — -]_(GR‘z‘)lJ
“ o (az,+nz,)02 ¢ DY
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The function FPAT has the form (Patankar 1980):

5
FPAT(Pe) = % = MAX{O : (1 - ’IP—(‘;I) } +MAX{0,-Pe} . (4.56)

Along the axial boundaries of the domain, the convection—diffusion momentum fluxes I'g,

have the following form:

~ n+l BOr i.0 [ﬁir,]]m-] -0 i.0 [yyi ]!
Fer)y == 05 =W =g =P[O
...l-N n+l (457)
) : o o-[OiNe -
= =it g ok o
’ Z

The form of the radial momentum conservation equations in the vapor region is identical to
that in the wick region where the volume porosity, €, is taken as one, and the radial

permeability, K, is infinite. Finally, the discretized form of the radial momentum
conservation Equations (4.51) is written in terms of the radial velocity corrections in the

following form:
aP{‘j(U'r)ivj + aEf‘j(U'r)m’j + aW{’j(U',)i_u + aN{,j(U’r)i,j+1 + as{d-(U'r)i,J__1 =s!; ,

(4.58)

for i=1to Nv-1, i=iL. to NL-1 and j=1 to Nz. Note that Equation (4.58) does not apply
at the L~V interface (i=Nv). At this particular location, the evaporation/condensation rates
are governed by the kinetic theory of gases, Equation (3.23). However, the interfacial
radial velocity corrections appear in equations (4.58) and must be treated correctly. Of

course, we have by construction:

aErN]_l‘j = aWi’,j = aN;:NZ = aS;-,] =0 . (459)

During the radial momentum predictor step, Equations (4.58) are solved for the radial

velocity corrections. In this case, the interfacial radial velocity corrections are evaluated
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explicitly, using best available estimates. After computation of the radial velocity

corrections, the radial mass fluxes are updated using the following corrections:
G, =p.U, . (4.60)
4.1.9. Axial Momentum Conservation Equations

After multiplying Equations (3.4) by the porosity €, integration of these equations leads to

the following discretized form:

Vol [pur —prut] + DIAGYT
~ 0+l A ~ o+l ~  \n+l - \n+l 0 (4.61)
+(x,r2r)”_ —(xrrb)l_lv)_ﬁu(Azrb)w—(Azrzz)i‘j = EXPL}/

where

P B ]_gw [naiv(0)],,, - [niv(O)]

EXPL}) = eVolz[ﬁg -

(AZ,, +Az)/2| 3 °° (AZ;,, +AZ,}/2
i fjir.jn _ O:’ il i Uir-\,j+l _ Ui—l‘j
+[Xr’|~lvjmx (AZJH N AZj) I ¢ “Hyrix (AZJ'H T AZj) ; 2:| , and

DIAG} = eVolz{h PSS

K, K

Gx

]

The magnitude of the mass flux at the axial velocity location (i,j) is consistently
extrapolated as:

&' \/[Gz]ij oif6i),, +1-el)Gr),] “62)

The convection—diffusion momentum fluxes I'z; and I'z; across the faces of the axial

momentum control volumes are discretized using the power law approximation of the
exponential scheme of Patankar (1980) as:
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(F.) =260, wSr=l(G;) [0 [+ FpaT(pey) Doy - 0],
1.} i,
(T = éGZﬁZ ~2 % = é( o) [0 + FpaT(Pel)) DR[Oyt - O]
1) Z
(4.63a)
where the diffusion and Peclet coefficients are defined as:
DY = l“l,vJRTX Peli = _]_ (Gzr)i,,‘ and
“ (AR, +AR,,)/2 ““e Dy
.. (4.63b)
D, = Hy ,  Pell= 1 (GZ.Z_)i'j
AZ, e D}

Along the radial boundaries of the domain, the convection—diffusion momentum fluxes I'z,

have the following form:

= o+l 90, 0.j [Glz’j]nﬂ A N T PR

(er)o,j =- u?__uVRTX_A‘RIT— =-Dz; [UZ ] ,
=90, NLj O‘[UZNI'J}M _ NLj [N

(FZ’)NI,J;— “? uVRTXTRN]/—z_ Dz, [Uz ] (4.64)

The form of the axial momentum conservation equations in the vapor region is identical to
that in the wick region where the volume porosity, €, is taken as one, and the axial

permeability, Kz, is infinite. At the L-V interface, the flux 'z has different expressions on

the vapor and liquid side. The interface is assimilated to a wall axially (no—slip condition),
but the radial mass transfer must be accounted for. The fluxes 'z, have the following

expressions at the L-V interface:

~ L
(P, = Lo.0, -u 2]
WL T Jin (4.652)

=—(G3),, [OF [ - FPaT(Pel) DL O 0],
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Nv,j

where the interfacial diffusion and Peclet coefficients are defined as:

L.j_ H‘ZLJ P Lj_ 1 (Gzr)Nv,J
Zr — ’ le - L s and
AR, /2 £ DZ;J
- (4.65¢)
. G*
Vi _ py peVi = ( Zr)Nv.j
Z ARy /2 z Dy

Finally, the discretized form of the axial momentum conservation Equations (4.61) can be
written in terms of the axial velocity corrections in the form:

aPy;(U, )+ alsﬁj(U'Z)HLj +aWi;(U,)

iLj T aNiZ,j(U'Z)i’jH +aS? .(U‘Z)i,j—l Y

i-1,j L] Lj

(4.66)

for i=1 to NL and j=1 to Nz-1. Note that the vapor (i=1 to Nv) and liquid (i=iL=Nv+I to
NL) regions are decoupled since we assumed a no-slip condition at the L-V interface

(Equation 3.17). We have by construction:

aEﬁV’j = aWiZL_j =0, and
, . i} , 4.67)
Ny =aWy=aNjy,; =aS{; =0

During the axial momentum predictor step, Equations (4.66) are solved for the axial
velocity corrections. Then, the axial mass fluxes are updated using the following
corrections:

G,=p,U, . (4.68)
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4.1.10. Mass Conservation Equations

The solution of the mass balance equations is the most essential step for resolving the
pressure—density—velocity couplings in the liquid and vapor regions. A combination of the
continuity equations and of an approximation of the momentum conservation equations is
used to formulate the Poisson equation, which is solved for the pressure corrections. The
discretized forms of the radial and axial momentum conservation Equations (4.58) and
(4.66) are derived as described in the previous sections, using the most recent updates of
the new—time pressure and velocity fields. It is apparent that solution of these equations
leads to the correct new—time velocity field only if the pressure field is correct. Since it is
not usually the case, the velocity and pressure fields are corrected simultaneously so as to

satisfy the following momentum correction equations:

apir,j(Uyr)iyj + aEir’J(U'f)m,j * aWier(U")i-l,j * aNir'j(U'r)i,jH +aSir'J'(U,")i,j—l
Ny P _p (4.69a)
=S, —&,8Vol' (ARi‘:l‘i AR‘S =
aPiZ’j(U'Z)]_‘j + aEﬁj(U;)Mj +alwij(u'l)i_Lj quleiZ‘j(U'z)i’j+1 + aSiZ,j(U'Z)i'j_]
(4.69b)

. P...,—P. .
=87, —g8Volli LIt
(825, +4z;) /2

The local volume porosity, €;, has been introduced into Equations (4.69) so that the form

of these equations applies to both the vapor region and the liquid-wick region. The local
volume porosity, €;, is simply defined as:

=1 if 1<Ny (vapor region),
e . : (4.70)
=g if i2iL=Nv+1 (wick region).

In order to form a pentadiagonal Poisson equation and avoid costly matrix inversions, the
off-diagonal velocity corrections in Equations (4.69) must be eliminated. In the SIMPLE
algorithm, these corrections are neglected. This approximation is used in Algorithms A and
B. The SIMPLEC (SIMPLE—Consistent) procedure of van Doormaal and Raithby (1984)
assumes that the off-diagonal corrections are equal to the diagonal correction. This is a

consistent approximation of the momentum correction equations, which does not require
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any pressure under-relaxation (APPENDIX C-5). When diffusion and convection
phenomena are dominated by pressure gradients and source terms, the consistent
approximation in SIMPLEC becomes exact, and hence this procedure should be used.
Furthermore, SIMPLEC performs as well or better than SIMPLER in terms of CPU time
and storage requirement. Indeed, when the SIMPLEC approximation was used in the third
Algorithm HPTAM-PISO in place of the SIMPLE approximation, it resulted in greater
numerical stability and much faster convergence rates. Therefore, the SIMPLEC
approximation was selected for Algorithm HPTAM-PISO. The SIMPLEC-approximated
momentum correction equations take the following form:

: . P"+1,' _p'.‘.
[aP]; +aE[j +aW]; +aN]; + aSi’,j](Ur)i,j =8I, —&8Vol}] (AR.‘H iAR‘}) — ., (471a)
1 1
z z 2 z : 2 ij Pije =Py
[aP?; +aEf; +aW?; +aNi_j+asi_j](UZ)Lj = S7, —¢,6Vol} AT AT (4.71b)
i+ j
The velocity and mass flux corrections are related by:
G,=p,U, and G,=p,U, . (4.72)

At the L-V interface, the liquid and vapor radial velocity corrections are expressed in terms

of the evaporation/condensation mass flux corrections as:

(G,

G
(UF)NVJ - N ( r)NVJ

and (U',) =

N (4.73)

PNv+Lj PNv,j
When solving the continuity equations, the evaporation/condensation mass flux corrections
can be either neglected (as in Algorithms A and B), or written implicitly in terms of vapor
pressure corrections using the kinetic theory relationship (Equation 4.27a), as it is done in
Algorithms HPTAM-PISO and HPTAM-Revised. In this case, Equation (4.27a) is

linearized as:

gt ]

~ * ~ % . PR
(Glr]+l)Nv,j = ﬁ?“ - (Gr)Nv,j + W(Gr)Nv,j = mj +90 B:;Jv PNV-] ? (474&)
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(G7),., =™ =¥(Ting.BY,,) (4.74b)

and

(4.74c¢)

It is worth noting that the interfacial radial velocity corrections appear in the momentum
correction Equations (4.69) for the radial momentum cells (i=Nv-1) and (i=Nv+1).
Because the evaporation/condensation rates are governed by the kinetic theory of gases, we
found that a consistent approximation (Equation 4.71) causes relatively slow convergence
rates when it is used in the iterative Algorithm HPTAM-PISO. To remedy this problem,
Equations (4.73) and (4.74) can be used to implicitly evaluate the interfacial radial velocity
corrections in the radial momentum correction equations (i=Nv-1). The SIMPLE-
Consistent approximation is used for the other off-diagonal radial velocity corrections. In
the radial momentum correction equations (i=Nv+1), the interfacial radial velocity
corrections are evaluated explicitly, after the pressure corrections in the vapor region have

been calculated using the following formulation:
(a) for 1=Nv-1

(4P +aW]j+aNf; +as] J(U;), =

Pis1j—Pij 0 aE{; a¥] _ (4.75a)
_5 2 L
(AR, +AR;)/2 y py, Py,

S;;—6vol,’

(b) for i=Nv+l

|aP}; +aE[; +aN{, +aS! [(U,) =

ij

P, -P, L (4.75b)
S;, —€6Vol.”’ L ——aw (U,) .
- (AR,,, +AR,)/2 AN

i+l

Indeed, when this procedure was used in HPTAM-Revised, in place of the SIMPLEC
approximation, it resulted in faster convergence rate and greater numerical stability.
Therefore, this SIMPLEC—corrected procedure was selected for Algorithm HPTAM-—
Revised.
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Now that the radial and axial mass flux corrections G'r and G'Z are related to the pressure
corrections by the momentum corrections equations, the mass balance Equation (3.1) can

be integrated as:

€. +1 ~ INJECT
—A—‘[(p\/ol):j —(pVo])irtj] - m;

n+l _(AZGZ):;—L =0,

L : (4.76)
+(AG,) +(A,6,)

~(AG ) )

i,] i—-1,j

~ INJECT
J

used later in modeling the liquid pooling phenomena.

where m; is the mass injection source for the liquid mass cells (iL,j). This term is

The transient term is linearized using the Taylor series linearization. The resulting equation

can be written as:

Ait [VO]:J(p* +p )i,j + p:.jVOl'i,jiI
* W[(Aré;)i.j_(A‘G")i-l,j +(AZG'Z)” (A G )lJ 1} 4.77)
=- [(Arét)i’j - (ArG:)i—l j + (AZG:)i (} } INJECT

The equations of state are linearized to express the density corrections in terms of the

pressure corrections as;

d
p?;l_pu’Lpu plj (agj P‘- , where

(4.78)
x o a
Pi.j p(P,J,T ) and (8_2)T:(£] (PIJ’T )

The volumes of the mass cells are kept fixed (independent of time), except those adjacent to
the L-V interface (Equations 3.20-3.22). In the case of a concave liquid meniscus, there is
some vapor in the wick, and the change in the liquid and vapor volumes adjacent to the L—-
V interface due to the variation of the cosinus of contact angle can be expressed in terms of
the wick void fraction as:
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eVoli ; =-Vi[op) (4.79a)

Vol = V(o) (4.79b)

J

The wick void fraction is geometrically related to the cosine of contact angle of the liquid
meniscus through Equation (3.21). This equation (technically its approximation, Equation
3.22) is linearized to express the wick void fraction corrections in terms of the cosine of

contact angle corrections as:

N , 0 ‘
(agu)j:(ap)j+(ap)j:(ap)j+(a%"] (uc)j : (4.80a)
€/j
where
(a;)j:(xp(p:)j, and (gzp] :(%—](p:)j o (4.80b)
C j [

The radial momentum jump condition, Equation (3.15), is used to relate the wick void

fraction to the pressure corrections. This relationship is implicitly discretized as:

(r)lnfl _an+l)+2iﬂ2+l + %_ ~1* (%nﬂ)2
Rp €Py Pv (4 81)

*

~ - v 1 r r
=2y U, — Uy U, —z[pL div(fjl‘)—pv div(fjv)] :
or or 3

After linearization of the square of the evaporation/condensation rate, Equation (4.81)

relates the corrections of the cosine of contact angle of the liquid meniscus, {.', to the

pressure corrections and evaporation/condensation rate corrections as:

PP 2, 0| P~ 2560,
' (4.82a)

1 1 l*|:_§._* ! .
+H ——-——=—|m | m +2y(G, ,]zEXPLJm ,
(gpiL,j Prv.j j L ( )NV'J t
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where

*

EXPL = —ptiLi| M —(O*) p B | My iy
" AR | P Nv+Lj ARNV pNV_] FINv-1

(4.82b)

_g{[u cﬁv(ﬁ)];j - [u dzv(ﬁ)];v.j}

Finally, Equation (4.74) is used to eliminate the evaporation/condensation rate corrections

in terms of the vapor pressure corrections, which gives:

Y F), )8Px, ;- 8Py ; +JUMP! , wi
ZR_G(“C) = (COEF},, 8Py, ; 6P, ;+JUMP}, , with
P
2B
COEF =1- R ~BJ* , and (4.83)
EPIL,j  PNv,j \/Tint

~ % ~ % O /.«
JUMP‘llm = EXPLJmt (PiL,j - PNV,j) + 2‘"""(”.(:) - [m ]
Rp J 8plLJ pNVJ

In Equation (4.82) it is apparent that the radial momentum jump source term JUMP;,,; goes

to zero upon convergence of the new—time fields.

Finally, by substituting Equations (4.80) and (4.83) into Equations (4.79), the corrections
of the liquid and vapor volumes adjacent to the L-V interface can be expressed implicitly as

linear functions of the pressure corrections as:

aoc
T

evoly ;=-V} ( ) _[COEFlmPNV i—PiL +éJUMP{n[},

(4.84)

AV l —_ vy a(l j 1 j
olyy; = V au . COEFm[PNVJ P,LJ +— 5 —JUMP;  |.
¢

Now it is possible to express all mass flux corrections and advanced-time volumes and
densities in terms of pressure corrections, so that the discretized mass balance Equation

(4.77) reduces to the following Poisson equation:

aP;(P')

L FAEL(F), raWD (P |+ aNDy(F) o PSP =S VECT,

i+1,j ) L. 5
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(4.85)
for i=1to NL and j=1to Nz.

We have by construction: aB},  =aW} =aNl =aSf =0 |, (4.86)

since the normal velocity components cancel on all solid boundaries and symmetry axis
(r=0 for a cylindrical heat pipe). The Poisson Equations (4.85) are solved for the pressure
corrections using a direct banded Gauss—elimination solver (with normalization and partial
pivoting). The use of the SIS iterative solver of Lee has proven to be very inefficient for

this type of elliptic linear system, even with strong relaxation (see Section 4.3).

At this point, it is useful to make the following observation. Since the evaporation/
condensation rate corrections are functions of the vapor pressure corrections only (see
Equation 4.74), the Poisson equations in the vapor cells are coupled to the liquid pressure
corrections only through the implicit discretization of the volumes of the vapor cells (i=Nv)
(Equation 4.79b, or 4.84), as it is done in Algorithm A. This coupling, however,
introduces a non—dominant component to the Poisson linear system, which is responsible
for the poor stability characteristics of Algorithm A. Fortunately, the coupling in question
1s found to be particularly weak because the volume of vapor in the wick is a very small
fraction of the vapor core volume, and represents an insignificant fraction of the working
fluid inventory in the heat pipe. Therefore, it is very advantageous to evaluate the volumes
of vapor cells adjacent to the L-V interface (i=Nv) explicitly in the mass balance equations.
This is accomplished in Algorithms B, HPTAM-PISO and HPTAM-Revised by replacing
Equation (4.79b) with the following equation:

Voly, ;= 0 . (4.87)

While this simplification does not affect the accuracy of the solution, it permits decoupling
the Poisson equations in the vapor and liquid regions (aEpNv,j =0), hence increasing the

stability of the algorithm, and reducing the amount of CPU time (the CPU time required to

solve a system of NLxNz linear equations with the banded Gauss—elimination solver is

proportional to NL2-67x Nz). The saving in the CPU time is particularly evident when
= FLOOD

internal iterations are needed for the convergence of the mass injection rates, m ] to

account for pooling of excess liquid.
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Now, the new algorithm is as follows. The Poisson Equations (4.85) are solved in the
vapor region (i=1 to Nv, and j=1 to Nz) for the vapor pressure corrections. Then the
evaporation/condensation rate corrections are calculated using Equations (4.74), and the
radial interfacial liquid velocity corrections appearing in Equations (4.75b) can be evaluated
from Equations (4.73). At this point, the Poisson Equations (4.85) are discretized in the
liquid region (i=iL to NL, and j=1 to Nz). In the equations for the liquid cells adjacent to

the L-V interface (i=iL), the vapor pressure corrections are known and treated explicitly:

aPRj(P')iJ_ +aE§),j(P'), ,+aN§’,J-(P')Lj+l +aS§"j(P')i,j_] =S _awﬁj(p‘)Nv,j _*_r"-n}NJECT.

(4.88)

Once the liquid pressure corrections are obtained, the corrections in the cosine of contact
angle, ¢’ are calculated from the radial momentum jump condition, Equation (4.83), and

the advanced—time tilted cosines of contact angle are obtained as:

~n+l _

THALE TR TTI (4.89)
4.1.11. Vapor-Wick Interfacial Model

During the startup of heat pipe from a frozen state, several interfacial conditions may occur
at the wick—vapor interface, such as: solid—vapor interface sustaining sublimation or
resolidification of working fluid, liquid film on a frozen substrate in the vapor core, liquid—
vapor interface sustaining evaporation or condensation of working fluid and a concave
liquid meniscus in the wick, and a receded liquid-vapor interface in the wick sustaining
maximum capillary pressure head. The way the model recognizes and treats these different
interfacial conditions is described in this subsection. First, we introduce the radial location
of the liquid—/ solid— vapor interface, Riy.. The volumes of the frozen and liquid phases in
the interfacial wick cell (iL,j) are given respectively as:

Volg™ =y Vo', and  Vol"d = (1 -y, j)Volj | (4.90a)
where
Volj'y) = en| (R, + AR )~ (R), 2|AZ;-odVi, whenRi, >R, (4.90b)
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vapor

5
Nmush
Nflrst

Vol'y = en| (R + ARy )” - R3, |AZ;

. o . (4.90c)
+ 1Rk — (R’ [AZ; —al Vi, when RY, <Ry .

In a partially thawed wick, there are three different axial regions: (a) a fully-thawed

region, with Rjpd > Ryk; (b) a liquid film on a frozen substrate, extending from j=Nyush

to j=Njast; and (c) a solid region, whose radius Rjpd < Ry (Figure 4.7).

(b) > () X
liquid film 1T, T

j=1

<

=
@)
E liquid

\/ working fluid b1 |
4 @/%;@/ﬂf////%@/,/ 7 :/%://%f/ﬁf/%/ 7 77 7 /;/A
sl

B D% %% % %% %% %% %% %% %% %%

evaporator condenser
> <t
FIGURE 4.7. Numerical Grid Layout of Heat Pipe Wick During Startup from a

Frozen State.

The liquid film thickness is determined based on calculated liquid volume fractions in the

interfacial wick cells. In the transition zone between regions (a) and (b) (Figure 4.7), the

interfacial cells incorporate liquid film at the top, intermediate solid, and liquid substrate

(J=Nmush to j=Nrirsi-1); in these cells the model does not differentiate between the liquid

film at the top and the liquid substrate. Therefore, to estimate the thickness of the liquid

film in these interfacial cells, the film thickness is assumed the same as that calculated in the

first cell incorporating only liquid film on a solid substrate (j=Nfjrs()-

In region (a) of Figure 4.7, the liquid and vapor phases are coupled through the momentum

jump condition (or capillary relationship), using Equations (4.82)—(4.84). When the

calculated cosine of contact angle is greater than 1, which is a sign of recessing liquid in the
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wick, the maximum capillary pressure head is assumed, by using Equation (4.82) with a
radius of curvature, R, , equal to the effective pore radius of the wick, Ry, (in that case, o
and ¢ are unity). The mass balance in the interfacial cell is then used to determine the
radial location of the liquid level, Rjny, in the wick. This treatment is also applied to the
liquid film (j < Njas) where Rind = Ryk.

In region (b) of Figure 4.7 where Rind < Ry, the coupling between the vapor and liquid
film is treated the same as in region (a), except that the L-V interface is flat; thus Equation
(4.82) is used with an infinite radius of curvature (in that case, 0tp and ¢ are zero). The
mass balance in the interfacial cell is then used to determine the location of the vapor—film
interface, Rin.. The film thickness depends on the rate of condensation at the L-V
interface, rate of liquid drainage from the film in region (a), and melting rate at the L-S
interface of the substrate. The liquid film thickness is used to determine the radial thermal
resistance of the film and the drag between the film and the solid substrate. The flow in the
liquid film is treated as a one—dimensional flow with a non-slip boundary condition at the

L-S interface and a slip boundary condition at the L-V interface.

Finally, in the interfacial wick cells in region (c) of Figure 4.7, which extends from
j=Njagt+1 to j=Ng, the solid substrate temperature is below the triple point, causing the
vapor to resolidify at the S-V interface. The radius of the S-V interface, Rjyy, is

determined from the mass balance in the interfacial cells.
4.1.12. Liquid Pooling Submodel

Whenever the cosines of the contact angles are positive, the LV interface is concave and
the interfacial phenomena are treated as described in the previous sections, 4.1.10 and
4.1.11. However, as discussed in Section 3.6, it is possible that the interfacial shear and
the thermal expansion of the liquid phase cause the concave liquid meniscus at the L-V
interface to rise and flatten at some wet point (j) along the heat pipe. Such a condition is

recognized by the numerical scheme as:

(ag*')j <0 . (4.91)

The submodel incorporated into HPTAM to handle liquid—pooling phenomena assumes that

as the transient progresses in time, any excess liquid into the vapor core is swept by the
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vapor flow towards the end of the condenser, leaving a flat interface and filling up the
eventual concave menisci on its way. The flag WET; is introduced to specify whether the

liquid cell (iL,j) is wet (pooling) or not:

e (~n+l
WET; =0 if (fig* )j>o :
(4.92)

WET; =1 if (gg*‘)j <0

Also, jMIN and jMAX stand for the first and last wet liquid cells (iL,j), respectively.
Wherever a convex liquid meniscus forms in the heat pipe (WET;=1), the interface is
assumed flat at this particular location, by forcing the cosine of contact angle correction

equal to:

4

(k) =-=(R), . sothar (i) =(&:") =0 , if WET, =1 . (4.93)

The radial momentum jump condition at the L-V interface (Equation 4.82) is used to

calculate the pressure correction in the liquid cell (iL,j) next to the diphasic interface:

if WET; =1 (4.94)

Py = (COEF), )Py +2%é(ﬂ2)_ +2 JUMP

mnt °
P i 0

Equation (4.94) replaces the discretized mass balance Equation (4.88) for the wet cell

(iL,j). The pressure Equations (4.85), (4.88) and (4.94) are solved for the liquid pressure

corrections in the liquid—wick region (i=iL to NL, and j=1 to Nz), and the corrections of
the cosines of the contact angle are evaluated using Equations (4.83) and (4.93) as:

(o ' . , . .

2R—J G(uc)j =(COEF),, J0Py, ;- 0P ;+ JUMP), , if WET;=0,

p (4.95)
(u;)j:_%(j)j if WET;=1,

The advanced-time cosines of contact angle are updated using Equation (4.89).

During the iterative process, it is possible that new wet points appear, or that former wet
points disappear, so that the flags WET; must be updated using Equations (4.92).
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Similarly, the mass injection rates, r'n}NJECT

balance, Equation (4.85), must be evaluated explicitly and updated, in terms of the mass

, which appear as a sink term in the mass

loss rates due to the removal of excess liquid from the wet liquid cell (iL,p), ﬁfLOOD. The

latter are determined in terms of the pressure corrections using the conservation of mass in

the wet cells (iL,j). Because we force a flat interface at the boundary of these cells, excess

liquid is pooling into the vapor core in order to insure mass conservation. This mass loss
~ FLOOD

rate m; must appear as a sink term in the mass balance Equation (4.88). In the

discretization of this equation, we make use of the fact that the L—V interface is flat to
express the volume of the cell as:

eVollt' =¢(A}AZ;), if WET;=1 . (4.96)
Since at this point we know all pressure corrections, the mass loss rates are simply

determined as;:

FFLOOD _ s - ang(p' )Nv’j _ [aPE’J(P’ )i'j + aEP.(P' ) T+ aNP’.(P' ) 4 aSE-(P' )i’j_] ]

if WET, =1,

m;°% =0, if WET,;=0.

(4.97)

Now we introduce mIR?, the mass rate of liquid transported by the vapor flow towards the

j
end of the condenser (at axial velocity location j). Physically we always have r}l}:ﬁ?b?l) >0

(unless all liquid cells are dry) and the wet cells (iL,j) form a connected set, from Jj=jMIN to
JMAX. The transport rate of excess liquid by the vapor flow can then be calculated as:

. i
m % = $mpto% for je[jMIN,jMAX]. (4.98)
jMIN

There are now several physical cases to consider, depending on the values of the quantities

jMAX and ﬁ]};},ﬁx.
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CASE 1 (jMAX<Nz and iy >0)

These conditions occur during the heating process of the heat pipe, before the wet point
reaches the end of the condenser. The mass of excess liquid transported by the vapor flow
is dumped into the next interfacial dry liquid cell iIL,jMAX+1). Therefore, the mass
injection source term for this cell is obtained from:

~ INJECT _ TRz
MiMAX+1 = MjMAX - (4.99)

All the other injection source terms are nul.

CASE 2 (jMAX=Nz and mjgiy >0)

These conditions occur during the heating process of the heat pipe, when the wet point
reaches the end of the condenser. After the L-V interface eventually flattens at the end of
the condenser, the excess liquid transported by the vapor flow accumulates in the vapor

core and forms a liquid pool. The mass rate of accumulation into the liquid pool is:

HPOOL _ ﬁ‘TA}}ZAX . (4.100)
The size of the liquid pool increases with time (all the injection source terms m!NECT are

j
nul). Conservation of mass in the liquid pool is expressed as:

n+l n
Mpoor ~MpooL _  PooL
At

, (4.101)
where MpooL represents the mass of the liquid pool.

n
CASE 3 (J'MAX =Nz, and - —M‘EOL <mjax < 0)

These conditions occur during the cooldown of the heat pipe, when the liquid pool is
receding. As the heat pipe cools down, the average liquid temperature and volume decrease

due to thermal contraction, and the amount of excess liquid which accumulated at the end of
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the condenser (liquid pool) is reduced. In this case, Equations (4.100) and (4.101) still
apply.

n
CASE 4 [jMAX=NZ, and m};\l}zx<_MpAotOL <0)

These conditions occur during the cooldown of the heat pipe, just before disappearance of
the liquid pool. Because there is not enough fluid mass in the pool to preserve a flat L-V
interface at the end of the condenser (j=Nz), the liquid pool vanishes and the liquid
meniscus recedes at (j=Nz), that is, the liquid cell (iL.,Nz) dries out (we mean that the cell
establishes a concave meniscus). For this case, the numerical treatment can become
extremely complex if more than one cell dries out at the same time (within the same time
step). Therefore, we assume, for simplicity, that the time step is small enough so that only

the last cell (iL,Nz) dries out. In this case ('{1@531 > O) , we have:

DRYy, =1 ,
WETy, =0 , and . (4.102)

n
*INJECT _ = TRz MpooL
my;, =Mz —At

All the other injection source terms are nul. The flag DRYN; is necessary to insure that
Expression (4.102) of the injection source term is used for all internal iterations within the
time step. Upon convergence for this time step, the pool vanishes and its mass is set to
zero (M%‘OL = O).

CASE § (j]MAX<Nz and mi4x <0)

These conditions occur during the cooldown of the heat pipe, after the liquid pool has
disappeared. The liquid cell (iL,jMAX) dries out. For efficiency of the internal iterations,
we anticipate the mass injection source term for this cell to be:

WET]MAX =0 R and

= INJECT _ = TRz (4.103)

MiMax = MjMAX-]

All the other injection source terms are nul.
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CASE 6 (jMIN>0 and gy <0)

There is always the possibility that the first wet cell (jJ=JIMIN) dries out . In this case, we

set:

Internal iterations are performed until the flags WET; and injection source terms converge.

Note that it is possible that several cells will dry out/wet within one time step.

The liquid—pooling submodel is rather sophisticated owing to the fact that it must identify
liquid pool recession and dewetting conditions during the cooldown of the heat pipe, and
incorporates both mass and energy transfer processes. For simplicity, we neglect the
kinetic energy of the liquid droplets carried by the vapor stream and the work developed by
the vapor to extract these droplets from the L-V interface. Therefore, conservation of
energy becomes a matter of conserving the enthalpy stored in the liquid droplets. The

W _]j:LOOD

power loss terms, , in Equation (4.10) are calculated explicitly in a manner

consistent with the derivation of the mass injection rates rTn}NJ ECT, WJFLOOD

loss term for the liquid cell (iL,j), which accounts for the enthalpy of the excess liquid

is the power

pooling into the vapor core. We introduce VTVJ-TRZ, the power of liquid transported by the

vapor flow towards the end of the condenser (at axial velocity location j). These two

quantities are related by:

v kK =~
Wik = ¥ WITOP for ke[jMIN,jMAX], where

JMIN
T = ~. % . ~ 4.105
WJI-:LOOD = m}DLOOD X hL(Tmtj) >0 if mJFLOOD >0, ( )
_ [ FLOOD _
wiLOOD _ ) TRz <0 if mftOP% <p,
j TRz j j

j-1

A positive flooding mass rate corresponds to the case of excess liquid pooling into the
vapor core, while a negative one corresponds to the filling up of the interfacial pores with
liquid droplets transported by the vapor flow (propagation of wet point). There are again

several physical cases to consider, after convergence of the internal Poisson iterations.
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CASE 1 (jMAX<Nz and DRYy, =0 = mjyiy >0)

These conditions occur during the heatup or cooldown of the heat pipe, with no liquid pool
at the end of the condenser. The liquid mass rate rﬁ},&ﬁx transported by the vapor flow is

dumped into the next interfacial dry liquid cell (iL,jMAX+1). Therefore, the power loss
term for this cell is taken as:

Wikiag =— Wikix <0 . (4.106)
CASE 2 (jMAX =Nz and ﬁ}&zx >0 = liquid pool grows)

These conditions occur during the heating process of the heat pipe, when the wet point has
reached the end of the condenser. The size of the liquid pool increases with time. The
enthalpy rate of accumulation in the liquid pool is:

WPOOL — WIRZ >0 . (4.107)

CASE 3 (jMAX=Nz, and mjisx <0 = liquid pool decreases)

These conditions occur during the cooldown of the heat pipe, when the liquid pool is
receding. For this case, we have:

i/POOL _ TRz ;n
\%Y _ijAX hPOOL <0, and

(4.108)

1;FLOOD _ i;POOL +i, TRz
Wimax =W = Wimax-1 <0

CASE 4 (DRYy, =1 = MAX=Nz-1, and iy >0)

These conditions mean that the liquid pool just vanished during the particular time step.
Because there is not enough fluid mass in the pool to preserve a flat L-V interface at the
end of the condenser (j=Nz), the liquid meniscus recedes at (j=Nz), that is, the liquid cell
(iL,Nz) dries out. We assumed that the time step is small enough so that only this cell dries
out. In this case, we have:
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~ MI'I hn
WwPOOL _ _ POOZ POOL _
t

Z;FLOOD _ +;yPOOL +;,;TRz
WiMax+1 =W = Wimax <0

’

, and . (4.109)

n+l n+l
MpooL =0 , hpooL =

For the case of a liquid pool jJMAX=Nz, CASES 2 and 3), the new—time mass, enthalpy
and temperature of the pool are determined from mass and energy balances as:

U [agnel n POOL
E[MPOOL - MPOOL] =m ",

I n+l n+l

37 POOL
E[MPOOLhPOOL - ?’OOLhEOOL] =W, (4.110)

I I
and  Tphor = TL(h{%ZSoL)

We assume hydrodynamic equilibrium at the vapor—pool interface to calculate the pressure

of the liquid pool:

POOL“nIz\J _lzi,Nz : .
v 1=

Finally, the liquid pool density and thickness are obtained as:

] | ]
PPOOL = pL(T?’BOL’PB(BOL) , and
azndl | MpdoL @.112)
POOL = —57~ ~nal
TRYy PROOL

4.2. DESCRIPTION OF NUMERICAL SOLUTION ALGORITHMS

The code is written in Standard Fortran 77 and is easily implemented on any machine
supporting a Fortran 77 compiler. In the present effort, HPTAM was successfully
implemented on 386 and 486 machines running MS-DOS, machines running VMS
operating system (DEC VAX 6320) and UNIX operating system (Sun workstations, AIX—
RS6000 IBM, CRAY-YMP).

131



Various segregated solution algorithms have been considered to accomplish the couplings
between the discretized equations. The first algorithm (A) is non—iterative and is formed of
the following sequential steps: (a) momentum predictor step, (b) pressure corrector step,
and (c) energy predictor step. In step (b) of this algorithm, the SIMPLE procedure is used
in the momentum corrections equations to eliminate the off-diagonal velocity corrections,
and the evaporation and condensation rates are linearized in terms of the vapor pressures
using the kinetic theory relationship. Also, the volumes of both the liquid and vapor cells
adjacent to the L-V interface are discretized implicitly using Equations (4.79). The

evaporation/condensation rates are evaluated explicitly in step (c).

The implicit discretization of the volumes of the vapor cells adjacent to the L-V interface
using Equation (4.79b) introduces a non—dominant component to the Poisson linear
system, which is responsible for the poor stability characteristics of Algorithm A.

The second algorithm (B) is identical to Algorithm A except for step (b). In step (b) of
Algorithm B, the volumes of the vapor cells (Nv,j) are evaluated explicitly using Equation
(4.87) in place of Equation (4.79b). Because the volume of vapor in the wick is a very
small fraction of the vapor core volume, and represents an insignificant fraction of the
working fluid inventory in the heat pipe, it is found that this simplification does not affect

the accuracy of the solution, but increases the stability of the algorithm.

Algorithm B, however, has some limitations. First, it is not suitable to resolve the
pressure—velocity coupling and the dependence of the evaporation and condensation rates
on both the vapor pressure and L-V interfacial temperature. Also, it has been established
that the SIMPLE—Consistent approximation performs much better than the SIMPLE
algorithm, particularly when diffusion and convection phenomena are dominated by

pressure gradients and source terms.

The third algorithm (HPTAM-PISO) is based on the two-stage PISO (Pressure-Implicit
with Splitting of Operators) scheme of Issa (1986). This algorithm is non—iterative and is
formed of the following sequential steps: (a) momentum predictor step, (b) pressure
corrector step, (¢) energy predictor step, and (d) pressure corrector step. Note the
additional step (d) to enhance the resolution of the pressure—velocity coupling. In steps (b)
and (d) of this algorithm, the SIMPLEC procedure is used in the momentum corrections
equations to eliminate the off—diagonal velocity corrections. Finally, the kinetic theory

relationship is linearized in step (c) to express the evaporation and condensation rates in
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terms of temperatures, as described in section 4.1.5. As before, the volumes of the vapor

cells (Nv,j) are evaluated explicitly .
The last algorithm (HPTAM-Revised) is iterative in nature to reduce the linearization errors
of the kinetic theory relationship and equations of state, and formed of the following

sequential steps:

(a) enthalpy predictor step: best estimates of pressures and convective fluxes are used

explicitly, frozen fractions in the wick are linearized in terms of temperatures, and the
enthalpy conservation equations are solved for the temperatures.
(b) the frozen fractions in the wick are updated in terms of the temperatures.

(c) iterations to (a) are performed till temperatures and frozen fractions have converged.

(d) pressure corrector step: a simplified form of the momentum conservation equations is

used to implicitly relate the mass flow rates and pressure gradients. The mass flow
rates are eliminated in terms of pressures in the continuity equations. The vapor pore
void fraction appearing in the interfacial wick cell volumes (Equations 4.90) is related
to U¢ through Equation (4.80), and the later is expressed in terms of the liquid and
vapor pressures using the capillary relationship, Equation (4.83). The resulting
Poisson equation is solved for the pressure field, and the vapor pore void fractions are

updated.

(e) momentum predictor step: best estimates of the pressure gradients are calculated, and

the momentum conservation equations are solved for the velocity field.

(f) properties update: the thermophysical properties and densities are updated.

(g) tterations to (d) are performed until velocities and pressures converge (that is until
pressure corrections are below a prescribed value).
(h) iterations to (a) are performed until the mass balance is satisfied (then evaporation,

condensation, sublimation and resolidification rates and temperatures have converged).

As before, the kinetic theory relationship is linearized in step (a) to express the vaporization
and condensation rates in terms of temperatures. In the momentum corrections equations
of step (d), the interfacial radial velocity corrections are evaluated from the linearization of
the kinetic theory Equations (4.74) and the SIMPLE-Consistent procedure is used to
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eliminate the other off-diagonal velocity corrections. This modification considerably
improved the convergence rate of the method. Also, the volumes of the vapor cells (Nv,j)
are evaluated explicitly, as before. A simplified flow chart of this algorithm HPTAM-
Revised is depicted in Figure 4.8.

4.3. SOLVERS FOR 5-POINT LINEAR EQUATIONS

To solve the five—point linear equations resulting from the discretization of the mass,
energy and momentum balance equations, a direct solution routine using Gaussian
elimination (Golub and van Loan 1984) is developed and tested, which includes partial
pivoting and row—normalization options. While this method is very efficient for solving
relatively small linear systems, it is very cumbersome for large matrices encountered in
fluid flow problems. To solve a set of discretized conservation equations on a rectangular
domain of N=NrxNz cells, the computational time increases with the number of equations
raised to the third power, that is as (NrxNz)3.

In this case, it is useful to consider the banded version of the solver. A band linear
equation solver is organized around a data structure that takes advantage of the many zeros
in the pentadiagonal matrix of the linear system. By construction, this matrix has lower
and upper bandwidths Nr and can be represented in a (2Nr+1)xN band array (see Figure
4.9). The bandwidth of the matrix is preserved as long as no pivoting is performed. If
pivoting is necessary, the matrix can still be represented in a (3Nr+1)xN band array.
Fortunately, such permutation of line was never necessary in solving the present heat pipe
problem. A quick estimate of the number of flops in the banded Gauss—elimination
algorithm shows that the computational time increases as Nr3xNz. Therefore, the use of
the band structure considerably reduces the amount of memory storage and computational
time required. More precisely, if we make use of the "corner zeros” in the band storage
matrix, the computational time is proportional to Nr8/3xNz, which is confirmed by
numerical experiments on a DEC VAX 6320 (Figure 4.10). The CPU time (in seconds)
needed for the banded Gauss—elimination solver to obtain the solution of a linear system of
NrxNz equations is fitted as:

CPU. . =166x10"°Nr*“Nz . (4.113)

Gauss

Several S—point iterative solvers have been examined and tested which combine strongly

implicit procedures with successive overrelaxation, additive block (row and column)
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The following linear system is considered:

aPi,j(T)i,j + aEi,j(T)i+l,j +awi.j(T)i—l,j + aNi,j(T)i,j+l +aSi.j(T)i,j—l =S,
for i=1 to Nr, and j=1 to Nz.
Z

If each cell [i,j] is given the cell A
number k=i+(j-1)xNr, the matrix [a] l(=';)2 17 18 19 20
has lower and upper bandwidthes
Nr (Nr<Nz for max. efficiency). 13 14 15 16

Example for Nr=4, Nz=5 : 9 10 11 12
fa] is a 20x20 matrix.

The banded matrix [b] has S |6 7 |8
2Nr+1 diagonals, that is : i=1 1 o 3 4
[b] is a 20x9 matrix. : 1

i=1 i=Nr

(=4)

N0 o] ple N
0 wirle N
0 wlirlE N
0 wirlo N
B olrlE N
s NHE N
s wlPlE N
s wlP|o N
5 o[PlE N
§ wirle N
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s w{rfo N
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S wip 0
5 0
s 0 AN
FIGURE 4.9. Ilustration of Band Storage of a Linear System Matrix which Results

from Discretization of Conservation Equations on a Two-Dimensional

Domain.
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corrections and conjugate gradient. The Strongly Implicit Solver of Lee (1989) is found to
be the most efficient in solving the momentum and energy discretized equations of the
present heat pipe problem. The SIS procedure of Lee has the advantage of not requiring a
partial cancellation parameter, as most of the implicit iterative solvers do. Also a SOR
(strongly Over—Relaxation) factor of unity is found to be the best choice for the
convergence of the iterations. The LU decomposition of Lee, combined with the iterative
method of solution devised by Stone (1968), is used.

One pass of the selected iterative solver is constituted of the following steps. Given a
vector approximation T* to the solution of the linear system [A]T=S, we use Stone's

iterative method to obtain a correction T to the vector T*, such that:
[A+A'] (T*+T") = [A+A'] T* + S - [A]T*
or
[A+A']T' =S - [A]T* . (4.114)

It 1s apparent that the vector correction is nul upon convergence. The matrix alteration [A']

to the system matrix [A] is obtained from the SIS procedure of Lee (1989) such that:
[A+A'] = [L][U] , 4.115)

where [L] is a lower triangular matrix and [U] is an upper triangular matrix. Both [L] and
[U] have same dimension NxN than the matrix [A]. While [A] has only 5 non-zero
elements per line when it originates from the discretization of conservation equations on a
two—dimensional domain, the triangular matrices [L] and [U] have only 3 non-zero
elements per line, which makes the computations particularly easy. Making use of
Equation (4.115) into Equation (4.114), the linear system becomes:

[L]JUJT'=R , (4.116)

where R =8 - [A]T* is the residual vector. The linear system (4.116) is readily solved

by making use of the properties of triangular matrices:
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L]V =R,
UIT' =V . 4.117)

Once T' is obtained, the vector T* is corrected as T* =T* + T", and the residual vector is
recalculated as R =8 - [A]T*. Another iteration is performed if R does not satisfy the

specified convergence criteria.

It is apparent that the iterative algorithm of Stone has the disadvantage of using more
computational time than Lee's, since it requires calculation of the residual vector at the end
of every iteration. However, knowledge of these residuals permits to closely control the
internal iterations of the iterative segregated algorithm HPTAM-Revised, resulting in an

overall saving in the CPU time.

The number of flops of the iterative solver SIS is proportional to the number of equations
N and to the number of internal iterations. Numerical experiments are performed on a DEC
VAX 6320 (Figure 4.11) to obtain the following relation for the CPU time (in seconds):

_SHITER

CPUgs == (4.118)

o

I, Civvrmaisiiiriiioes

Correlation

| CPU =1.66x10°Nr**"Nz (s) [

Gauss—Solver CPU Time / Nz (s)
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Jodinniondindod A2 { @ Computer Runsti.
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FIGURE 4.10. CPU Time on a DEC VAX 6320 to Solve a Linear System of NrxNz
Equations with the Banded Gauss—Elimination Solver.
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Because the SIS solver is iterative in nature, the computational time for this solver is a
function of the number of iterations performed. On the other hand, the amount of CPU
time necessary when using the direct Gauss algorithm is solely a (strong) function of the
size of the discretized domain. To evaluate which solver is more efficient in a given
situation, it is useful to plot the ISO-CPU curves in Figure 4.12. For a given number of
radial cells Nr (it defines the bandwidth of the matrix), there is an optimal number of
internal iterations for the SIS solver such that it is competitive with the Gauss solver in
terms of CPU time. It is worth noting that in practice, the amount of CPU time needed for
the SIS solver is only a fraction of that needed for the Gauss direct solver. For example,
on a 10x30 domain, if 7 iterations of the SIS solver are sufficient to bring the residuals
below a satisfactory value, then the saving in the CPU time is about 50% than that for the
Gauss algorithm. Since the CPU time required for the Gauss solver is proportional to
Nr8/3, the maximum number of iterations increases as Nr5/3 (Figure 4.12). The saving in

the CPU time increases exponentially with the size of the numerical domain.
4.4. PERFORMANCE OF NUMERICAL SOLUTION ALGORITHMS

To verify the system of equations in HPTAM and test the performance of the various
algorithms considered, the model is used to simulate the transient results of El-Genk and
Huang (1993) for a (fully—thawed) horizontal water heat pipe experiment. The design and
operational parameters of the experiment analyzed are given in Section 7.1. In the
experiment, the heat pipe was initially at room temperature (296.2 K) when the electrical
power to the heating tape in the evaporator section increased in a step—function to 575 W.
The cooling water enters the condenser cooling jacket at 294.5 K and 11.33 g/s. After
about 10 minutes into the heatup transient, the heat pipe reaches steady—state. After an
additional 7 minutes of steady-state operation, the electrical power to the heating tape was
turned off, and the heat pipe entered the cooldown phase of the transient. To account for
the actual heat input to the heat pipe evaporator section during the heat pipe transient, the
calculations are performed using the measured values of the wall temperatures along the
evaporator section. The number of numerical cells are: Nv=5 (5 radial cells in the vapor
core), NL=iL=6 (1 radial cell in the liquid-wick region), Nr=7 (1 radial cell in the wall),
and Nz+1=31 (31 axial cells). More details can be found in Section 7.1.

Because of their simplistic nature, algorithms (A) and (B) are expected to be very

inefficient. Indeed, when algorithm (A) is used, the size of the time step is limited to a very
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small value (0.5 ms), resulting in a computer time to real time ratio of 4500 on a DEC VAX
6320.

When algorithm (B) is used, the volumes of the vapor cells adjacent to the L-V interface
(Nv,j) are explicitly discretized in the mass balance equations. This simplification does not
affect the accuracy of the solution, because the change in vapor volume in the wick is
negligible and does not affect the pressure field in the vapor core. However, the numerical
algorithm is much more stable. This is because implicit discretization of the volumes of the
vapor cells (Nv,j) introduces a non—dominant component in the Poisson equation, which
decreases the stability of the algorithm. This approach also permits the decoupling of the
Poisson equations in the vapor and liquid regions, which reduces the amount of CPU time
for the Gauss solver. As a result, algorithm (B) is five time faster than algorithm (A), with
a time ratio of 900. The time step could be increased to 2 ms (this is a value 4 times greater

than the previous one).

In the algorithm HPTAM-PISO, the implicit coupling of the kinetic theory equation with
the energy conservation equations, combined with the Pressure—Implicit Splitting Operator
algorithm (PISO) of Issa, allowed to use larger time steps, ranging between 5 and 15 ms.
With an increase in CPU time of only 15% per iteration, the overall acceleration factor is
greater than 5 (with a computer to real time ratio of 150) when compared with algorithm
(B).

While this algorithm is much more efficient (30 times faster) than the original algorithm
(A), the size of the time step is still very small and not suitable for simulating heat pipe
transients of several minutes. This limitation on the size of the time step is essentially due
to the linearization errors of the equation of state of the vapor, and the kinetic theory
relationship used to calculate the evaporation/condensation rates. As indicated in the
introductory section, the instability characteristic of the kinetic theory equation is the most
stringent. This is because it is formulated in terms of the difference of two terms of

comparable magnitude.

To minimize the constraint imposed by the kinetic theory relationship, the iterative scheme
HPTAM-Revised, i1s used. During the first pass of this algorithm, the evaporation and
condensation rates are taken as that of the previous time step when solving the energy
equation (step (a)) and only one pressure—velocity internal iteration (step (g)) is performed.
The use of the SIMPLEC—corrected procedure instead of SIMPLEC as in the previous
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algorithm decreased the residuals of the momentum equations by one order of magnitude
for an identical number of internal iterations (g). In order to model a half-hour transient of
the water heat pipe, this iterative algorithm requires 35 hours of CPU time on a DEC VAX
6320, which corresponds to a computer to real time ratio of only 70. The size of the time

step used in the calculations ranged between 40 ms to 100 ms.

Figures 4.13 to 4.16 compare the numerical results for the HPFTAM-PISO and HPTAM-
Revised algorithms. The comparison is very good, except for a difference in the centerline
vapor velocity of about 3% during the heatup transient of the heat pipe. The time step used
by HPTAM-Revised is generally one order of magnitude larger than that used by
HPTAM-PISO. When time steps larger than 0.1 s were used, a loss of accuracy in the
calculations resulted for the particular water heat pipe considered, but HPTAM-Revised

was still performing in a stable manner.

Figures 4.13 and 4.14 compare the calculated transient response of the effective power
throughput, determined from the heat balance in the cooling jacket, and of the vapor
temperature with experimental data. The calculated effective power throughput at steady—
state (455 W) 1s almost the same as that reported in the experiment (443 W). However, the
transient response of the calculated power throughput is somewhat faster than that in the
experiment. This is because in the experiment, a relatively large fraction of the heat
generated in the electric tape is initially stored in the insulation surrounding the evaporator
and adiabatic sections and in the condenser jacket, therefore slowing down the heat pipe
transient. As shown in Figure 4.14, the calculated transient vapor temperature compares
very well with experimental measurements. At steady-state, the calculated vapor
temperature was only 1.2 K lower than that measured.

Such good agreement between HPTAM and the transient experimental data of the water
heat pipe verifies the soundness of the system of equations and the modeling approach
used. As described in the previous sections, HPTAM has the additional capability to
simulate pooling of excess liquid in the condenser. After the formation of the liquid pool,
any liquid volume increase due to thermal expansion is accommodated in the pool. Figure
4.15 shows that at steady state a liquid pool that is 1.7 mm thick forms at the end of the

condenser section.

In algorithms (A), (B) and HPTAM-PISO, the discretized energy, balance and momentum

equations are solved using the banded Gauss—elimination solver. In the algorithm
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HPTAM-Revised, the iterative SIS solver is used instead, except for the solution of the
Poisson equations (the use of such iterative solver is proven to be very inefficient for this
type of elliptic linear system of equations, even with strong relaxation). It turned out that
the SIS solver is extremely efficient for solving the momentum and energy equations.
Typically, the residual of the energy equation decreased by 2 to 4 orders of magnitude,
while the residuals of the momentum equations decreased by one order of magnitude, for
every iteration of the solver.

Despite these favorable results, the use of the SIS solver decreased the CPU time by only
10-20%, simply because the numerical domain (8x31) was relatively small. For a
reasonable number of iterations (typically 3 to 4 for step (g), and 4 to 6 for step (h)),
between 50% and 65% of the CPU time is used up by the 5—point linear system solvers.
Because of this significant fraction of the CPU, the use of the SIS solver could result in

significant savings for larger computational domains.

In the next chapter, the physical and numerical schemes for modeling heat and mass

transfers in the wick are validated.
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5. BENCHMARK OF WICK MODEL

In order to verify the modeling approach, it is preferable to compare the model results with
experimental data. The development of HPTAM has been guided by continuous
benchmarking of its predictions with available experimental and numerical results. The
accuracy of the freeze—and-thaw model of the wick region of the heat pipe is checked usin g
several benchmark problems, namely: (a) natural convection of liquid in a square cavity
(Prakash and Patankar 1985); (b) natural convection of molten gallium in a porous bed of
glass beads (Beckermann and Viskanta 1988); (c) one—dimensional pure conduction
solidification (Ozisik 1980); (d) two—dimensional pure conduction freezing in a corner
(Rathjen and Jiji 1971); and (e) freezing of tin in a rectangular cavity in the presence of
natural convection (Wolff and Viskanta 1988). Predictions of the present freeze—and—thaw
model for each of the above problems are presented and discussed in the following
subsections, and compared with numerical and experimental values reported in the

literature.
5.1. NATURAL CONVECTION IN A SQUARE CAVITY

This problem is a standard test case for verifying the accuracy of computational schemes.
The square cavity has differentially~heated vertical side~walls and insulated horizontal
boundaries. The properties of the fluid are assumed constant, except the density which is a
linear function of the temperature (using a constant thermal expansion coefficient, Bp). A
dimensionless analysis of the problem shows that the solution is dependent only on Prandtl
(Pr) and Grashof (Gr) numbers. No analytical solution is available for this problem, and
the results of the present model can only be compared to those of other numerical models.
Such a comparison is made in this section with the results obtained by the SIMPLE finite—
difference method of Patankar using a fine 32x32 grid, and by the finite—element method
using equal-order velocity—pressure interpolation on a 19x19 grid (Prakash and Patankar
1985).

Calculations are performed with the present model on a uniform 24x24 numerical grid with
a fixed Prandtl number of 1, and Grashof numbers of 103, 104 and 105. Calculated mid—
plane temperature and vertical velocity profiles and flow field are presented for Gr=10% and

Gr=105, in Figures 5.1 to 5.6. For lower values of the Grashof number, the present
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model produces very accurate results, even with coarser grids. For the numerically most
challenging case of Gr=103, calculated mid-plane temperature and vertical velocity profiles
(Figures 5.4 and 5.5) agree to within 4% with that reported by other investigators (Prakash
and Patankar 1985). At such high Grashof number, the convective cell in the cavity has a
stagnant eye of elongated shape (Figure 5.6), which is characterized by a uniform
temperature profile along a large portion of the horizontal mid—plane (Figure 5.4). Most of
the heat is transported by strong convection currents around the stagnant eye, characterized
by vertical velocity peaks located very close to the vertical side-walls (Figure 5.5). The
calculations confirm that the continuum conservation Equations (3.1)-(3.6) developed for
multiphase problems transform, as they must, to well-established single—phase

conservation equations.
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5.2. NATURAL CONVECTION OF MOLTEN GALLIUM IN A POROUS
BED OF GLASS BEADS

In this section, the work of Beckermann and Viskanta (1988) is used to verify the
Brinkman-Forchheimer—extended Darcy's model for predicting liquid flow in porous
media. These authors studied numerically and experimentally the phase—change of pure
gallium in a porous bed of randomly—packed glass beads, 6 mm in diameter. The well
insulated rectangular test cell was 47.6 mm in height and width, and 38.1 mm in depth.
The two vertical side~walls, which served as isothermal heat source and heat sink, were
multipass heat exchangers machined out of a copper plate. The first experiment performed
by Beckermann and Viskanta (Experiment 1) was a pure natural convection flow
experiment. The temperatures of the hot and cold walls of the cavity were held constant
above the melting temperature of gallium, at 325.05 K and 303.65 K, respectively. Figure
5.7 shows that the difference between the measured and predicted steady—state temperature

profiles is less than 7% of the temperature difference across the test cell.
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FIGURE 5.7. Measured and Predicted Temperature Profiles for Natural Convection
of Pure Gallium in a Porous Bed of Glass Beads (Exp. 1,
Beckermann and Viskanta 1988).

5.3. ONE-DIMENSIONAL SOLIDIFICATION PROBLEM

The analytical solution of the problem of pure conduction, one—dimensional solidification
(Ozisik 1980) is used herein to verify the present freeze—and—thaw model of the heat pipe
wick. The liquid and solid phases have constant, but different, thermophysical properties.
Initially, the semi-infinite slab is liquid at a temperature T, above the fusion temperature of
the fluid, Tys. The solidification process is initiated by lowering the wall temperature to a
value T¢ below Tgys. A dimensionless analysis of the problem shows that the solution is
dependent only on three parameters, the ratio of solid and liquid thermal diffusivities,
os/o, the Stefan number, St, and the dimensionless liquid superheat, To*. In the
dimensionless form, the crust thickness growths with time according to the relation (Ozisik
1980): '

%szxﬁ, (5.1)
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where the freezing constant, A, is given by the following transcendental equation:

o

- —A=0 . 2
erf(A) 0 =0 (>2)

erfc(AJog /o) St

exp(-A%) T*(as ]1/2 exp(—~Alog / o) B NG

The temperature profiles in the solid and liquid are given by:

Tg()-Te _erf(X)

T T ety for x<3(t) (X <A), (5.3a)

fus

and

T () -T, _ erfe(X o5 7y ) for x=8(t) (X 2A) .

T =T,  erfc(AJog /o)’

(5.3b)

In Equations (5.3a) and (5.3b), the similarity variable X =x/ dougt .

Numerical calculations are performed on a uniform grid of 50 cells, for a fluid with thermal
diffusivities ratio as/0i =2, and Stefan number St = 0.25 (the model used the following

thermophysical properties: ps=p; =1000 kg/m?; C,5=CpL=1000 J/kg K; ks=100 W/m K;
kp =50 W/m.K; Hy,=10° J/kg; Tg,s=400 K). Figures 5.8 to 5.11 compare the results of
the present model with the exact analytical solution for the cases of no initial liquid
superheat (T*=0) and with liquid superheat (Ty*=0.25). Also shown are the results of
Beckermann and Viskanta's model (1988), which uses the conventional harmonic mean
scheme of Patankar (1980) to estimate the heat fluxes (no special treatment is performed in
the vicinity of the solidification front). Results of the present model compare well with the
exact analytical solution, while the conventional harmonic mean scheme underpredicts the
crust thickness and generates oscillations of large amplitude in the temperature time history.
The larger the change in thermal conductivity of the working fluid upon freezing, the larger
the amplitude of these oscillations. The peaks of the oscillations correspond to when the

solidification front crosses an interface between two numerical cells.
Note that the present model does not produce perfectly smooth crust thickness and

temperature histories, particularly for freezing problems with small Stefan number and

large initial liquid superheat. This is because the average nodal temperature of a cell
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undergoing phase—change is artificially set to the fusion temperature of the fluid, so that the
change in the heat storage in the mushy cell is not predicted accurately. However, the
present model is a good improvement over the classical fixed—grid enthalpy formulation,
which uses the harmonic mean scheme; it reduces the amplitude of the wiggles in the

temperature time histories by one—to—two orders of magnitude in all cases.

The freezing constant predicted by the present model was also computed for increasing
Stefan numbers and liquid superheats and compared with the exact analytical solution and
the numerical solution of Beckermann and Viskanta (1988) over a larger spectrum of
conditions. As shown in Figure 5.12, the present model predicts the freezing constant
quite well over the full range of Stefan numbers and liquid superheats investigated.
However, the enthalpy mode! using the harmonic mean discretization scheme (referred to
as Beckermann and Viskanta 1988) underpredicts the freezing constant, with the error
increasing as the Stefan number decreases and/or the liquid superheat increases. The
slower the transient, the flatter the temperature gradients in the vicinity of the freezing front,

and the larger the numerical error introduced by the harmonic mean scheme.

An obvious alternative to the numerical error, step-like and weavy patterns characteristics
of the fixed—grid enthalpy method is to decrease the numerical mesh size, so that the time
over which the nodal temperature of the mushy cell is held at T is reduced. Numerical
calculations show that the magnitude of the oscillations decreases as the mesh size is
decreased and/or the Stefan number increased, and the solution appears essentially smooth.
As expected, the conventional enthalpy formulations provide accurate numerical results as

long as the mesh size is sufficiently small.
5.4. TWO-DIMENSIONAL FREEZING IN A CORNER

The present freeze—and-thaw model is also verified using an approximate analytical
solution for the two—dimensional (pure conduction) freezing problem in a corner (Rathjen
and Jij1 1971). Initially, the liquid is at 12.5 K above its fusion temperature. Freezing is
initiated by lowering the temperature of the two corner faces 25 K below the fusion
temperature, which corresponded to a Stefan number, St= 0.5, and an initial liquid
superheat, T,*=0.25 (the model used the following thermophysical properties:
ps=pL=1000 kg/m?; CpS=2000 J/kg.K; Cpl=1000 J/kg.K; ks=100 W/m.K; k. =50
W/m.K; Hyy=10% J/kg; T, =400 K). The analytical solution is presented in Figure 5.13

in terms of the similarity variables X* and Z*, so that the freezing front profile is
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stationary. Even though the present solution procedure is based on a one~dimensional
analysis of the melting front location, it accurately predicts the shape of the liquid—solid
interface of truly two—dimensional problems. As shown in Figure 5.13, the numerical

predictions are in excellent agreement with the analytical solution.

5.5. FREEZING OF TIN IN A RECTANGULAR ENCLOSURE WITH
NATURAL CONVECTION

The experimental work of Wolff and Viskanta (1988) is also used to benchmark the freeze—
and-thaw model. These investigators studied the freezing of pure tin in a rectangular
enclosure with differentially heated vertical side—walls and insulated horizontal boundaries,
in the presence of natural convection. The rectangular test cell had inside dimensions of
66.6 mm in height, 88.9 mm in width, and 126 mm in depth. The hot side-wall
temperature was kept at Ty=506.15 K. Initially, the fluid in the test cell was liquid, at this
temperature (To=Ty). The phase—change process was initiated by lowering the cold wall
temperature to a value of 502.15 K, which corresponded to a Stefan number (St) of 0.013.

The temperatures in the liquid and the locations of the freezing front were measured using a
movable thermocouple probe and L-shaped glass rod, respectively. Figures 5.14 and 5.15
show the measured and predicted temperature profiles in the liquid at two different times in
the transient. The scatter in the data is due to disturbances introduced by the measurements
probes and to the uncertainty in thermocouple measurements (+ 0.1 K), since the liquid
superheat in the experiment was only 1.1 K (pure tin has a melting temperature of 505.05
K). Despite these difficulties in the measurements, the model predictions compare well
with experimental data. Also, it is worth noting that the temperature profiles calculated by
HPTAM are closer to the experimental data than that calculated by Wolff and Viskanta
(1988), and Raw and Lee (1991).

Figure 5.16 shows the measured and predicted freezing fronts at preselected times. The
early discrepancy between calculations and experimental data is because the specified cold
wall temperature was not actually achieved in the experiment until approximately 0.033h.
Also, imperfect insulation at the bottom of the test cell speeded up the solidification rate
there, as remarked by Wolff and Viskanta (1988). Nevertheless, the front locations
predicted by HPTAM compare also well with experimental data, and are similar to that
calculated by Raw and Lee (1991). Figures 5.17 and 5.18 show the calculated liquid flow
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FIGURE 5.18. Calculated Liquid Flow Field at Time 1.468h, for Solidification of

Pure Tin.

field in the cavity at two different times in the transient. As expected, the freezing front
moves slower near the top of the cavity where the liquid, heated by the hot wall, impinges.
The solidification rate increases toward the bottom of the cavity, since the liquid cools

down as it descends along the interface.

This ends this chapter on the benchmark of the wick model. In the next chapter, results of

the startup of a water heat pipe from a frozen state are presented and discussed.
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6. STARTUP OF A WATER HEAT PIPE FROM A FROZEN STATE

This chapter presents the results of the startup of a water heat pipe from a frozen state. The
calculation illustrates the importance of the sublimation and recondensation processes
during the first period of the transient. The startup is characterized by partial recession of
liquid in the evaporator wick after the capillary limit has been reached. After enough
working fluid was melted by resolidification and condensation in the adiabatic and
condenser sections of the heat pipe, resaturation of the wick was established before

complete dryout of the evaporator occurred, leading to a successful startup.
6.1. DESCRIPTION OF THE TEST CASE

The copper heat pipe, 22 mm 1.D., 25 mm O.D., has a 100—inch-! mesh copper screen
wick (€=0.75, d=109 pm, Rp=72 pm), 1-mm thick. The evaporator, adiabatic, and
condenser sections are 0.3 m, 0.1 m, and 0.6 m long, respectively. The evaporator is
heated uniformly and the condenser is radiatively cooled to an ambient temperature of 260
K. The emissivity and view factor of the condenser are taken as 1 and 2, respectively. The
view factor accounts for the increased radiative area due to the condenser fin. Because
water expands upon freezing, it is assumed that the ice extends initially 0.046 mm above
the screen surface (Figure 6.1a); the mass of working fluid in the heat pipe is 48.0 g
(Figure 6.2).

6.2. TRANSIENT OPERATION WITH FROZEN EVAPORATOR

The frozen heat pipe is initially at 260 K when the input power to the evaporator was
increased in a step—function to 50 W. After about 20 s, 36 W are consumed in the
sublimation—resolidification process of the ice (Figure 6.3), and the other 14 W are used to
raise the temperature of the heat pipe structure and solid working fluid in the evaporator
(Figure 6.4). Most of the heat generated by resolidification along the adiabatic and
condenser sections of the heat pipe is used to raise the temperature in these sections. As a
result, the power radiated away at the condenser wall increases steadily, as shown in
Figure 6.5. After about 140 s, when the heat pipe temperature reaches the fusion
temperature of ice, the fraction of the power throughput radiated away at the condenser wall
is still small, only 5.3 W (Figure 6.5). This is characteristic of radiative heat transfer,

which increases with the fourth power of the temperature. The sublimation-resolidification
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process partially depletes the frozen working fluid in the evaporator and accumulates it in
the adiabatic and condenser sections (Figure 6.1b). During the first 140 s of the transient,
when the working fluid is still frozen in the evaporator, the heat pipe can be considered to
operate like a fully—thawed heat pipe during heatup transient (Figures 6.4 to 6.6), with the
differences that the heat transport mechanism is sublimation—resolidification instead of
evaporation—condensation, and that the displaced working fluid cannot circulate back to the
evaporator. That is, the loss of working fluid by sublimation will eventually lead to
complete dryout of the evaporator and startup failure. Note the slight increase in the
sublimation rate with time (Figure 6.3) due to the slow decreases in the radial thermal
resistance and heat storage capacity of the evaporator wick. The normalized working fluid
level at the evaporator end of the wick, [Rin(1)-Rwk] / ARy, is plotted in Figure 6.7. A
value of zero corresponds to a wick saturated with working fluid, while a positive value
means that the working fluid extends above the screen surface, in the vapor core, and a
negative value represents a fluid level receded within the wick. As shown in Figure 6.7,
the level of ice in the evaporator decreases at uniform rates during the first 140 s of the
startup transient. The rate takes a larger value as soon as the level starts receding within the

wick, because of the smaller volume porosity of the screen wick.
6.3. THE MELTING PROCESS OF THE EVAPORATOR

As the wall temperature continues to increase, the working fluid at the evaporator wall
begins to melt. The melting front progresses essentially radially with time, as shown in
Figures 6.1c and 6.1d. Most of the heat input (41 W) is consumed in the thaw of the
working fluid, and the importance of the sublimation-resolidification process quickly
diminishes, transporting only 5.4 W (Figure 6.3). This reduction in the sublimation rate is
responsible for the slower rate of decrease in the evaporator ice level (Figure 6.7) during
the melting process of the evaporator, from 142 s to 247 s.

During the thaw process of the heat pipe, from 142 s to 530 s (Figure 6.2), the temperature
of the condenser remained close to the fusion temperature of the working fluid, and the
radiative output power remained essentially constant at 5.3 W (Figure 6.5). Also, the
¢vaporator temperature remained within only a few Kelvins of the fusion temperature
(Figures 6.4 and 6.6), so that the startup of the water heat pipe was essentially uniform in
temperature. This is characteristic of the startup of low—~temperature heat pipes, which
become immediately active upon heatup, as sublimation and evaporation of working fluid

(and their counterparts, resolidification and condensation) have the potential of transporting
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large amounts of energy without encountering any vapor transport limitations, as in the

case of high—temperature heat pipes.

After 248 s, the thaw front reaches the wick—vapor interface first at the evaporator end
(Figures 6.1d and 6.1e). Within only a few seconds, most of the wick—vapor interface in
the evaporator is thawed (Figure 6.1f). Consequently, most of the heat input is used to
evaporate the working fluid (the power throughput is essentially 50 W), as indicated by the
jump in the rate of evaporation in Figure 6.3. Most of the heat deposited by condensation
and resolidification along the adiabatic and condenser sections of the heat pipe is consumed
in the thaw of the working fluid (about 40 W), causing the melting front to proceed radially
outward in the condenser and adiabatic sections (Figures 6.1f to 6.1j).

6.4. THE MELTING PROCESS OF THE CONDENSER

After the thaw front reached the wick—vapor interface in the evaporator, simultaneous
melting and condensation occurred at the L-V interface in the adiabatic and condenser
sections, forming a liquid film near the leading edge of the frozen fluid (Figure 6.1f).
Figure 6.8 shows the axial vapor velocity along the centerline of heat pipe during the
formation of the liquid film. The vapor velocity peaks at the axial location corresponding to
the thaw front at the wick—vapor interface. At 248.0 s, the liquid film extends to the end of
the adiabatic section, and resolidification still occurs along the S-V interface in the
condenser (Figure 6.8). After an additional 1.4 s, the liquid film extends to the middle of

the condenser, and covers all of the condenser at t=252.4 s.

Evaporation depletes the working fluid in the evaporator, and the vapor pore volume
fraction in the wick (or the cosinus of contact angle of the liquid meniscus) rises, eventually
reaching a value of 1 (Figure 6.9). At 267 s, the capillary pressure head reached its
maximum value along the evaporator, however, the frictional drag at the film-solid

interface slowed liquid return, causing a liquid recess in the evaporator wick (Figure 6.7).

As melting proceeded radially outward in the adiabatic and condenser sections, enough
working fluid thawed and began to replenish the liquid in the evaporator; this occurred
before the wick would have dried out in the evaporator (Figures 6.1g and 6.1h), causing
unsuccessful startup. At 300 s, the vapor pore void fraction recovered at the beginning of
the adiabatic section (Figure 6.10), and liquid flowed to refill progressively the wick
towards the evaporator end (Figures 6.1g to 6.1h). During that phase, evaporation kept
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depleting the working fluid in the unsaturated portion of the evaporator, and the liquid level
receded further down in the wick (Figure 6.7). Figure 6.11 shows the vapor and liquid
pressure distributions along the heat pipe at two different times during resaturation of the
wick. The vapor pressure is almost uniform along the heat pipe, at a value corresponding
to the saturation at the fusion temperature of the working fluid, and this during the entire
thaw process of the heat pipe (Figure 6.6). The liquid pressure corresponds to the
maximum capillary pressure head of the heat pipe along the unsaturated portion of the
condenser, and is equal to the vapor pressure along the portion of the wick covered with
the liquid film. At time 410 s, the liquid reached its lowest level in the wick at the
evaporator end of the heat pipe (Figure 6.7), and the wick became fully saturated with
liquid at 429 s (Figures 6.1i and 6.7). Resaturation of the wick caused a temporary
decrease in the evaporation rate (Figure 6.3), as some of the heat input was consumed in

heating the cold liquid returning to the evaporator from the condenser section.

Figure 6.12 shows the vapor and liquid pressure distributions along the heat pipe at time
439 s, shortly after resaturation of the wick. The vapor poré void fraction has recovered
along the entire length of the evaporator section (Figure 6.10), and the heat pipe operation
is not limited by the capillary limit anymore. Liquid and Vapor interfacial pressures are
equal along the shorter extent of the liquid film. The extent of the liquid film in the
condenser decreased with time due to the reduction in the working fluid volume as it melted
(Figures 6.1g to 6.1i). At 506 s, the liquid film disappeared, shortly after the wick became
fully saturated with liquid (Figure 6.1j). This was expected, since the heat pipe was
nearing the condition for which the liquid charge of working fluid was calculated (that is, a
fully-saturated wick with liquid fluid at the fusion temperature of the working fluid).

At S11 s, the thin ice crust along the condenser began to melt rapidly, uncovering the wall
and causing the portion of the power throughput consumed in the thaw of the working fluid
to drop quickly from 42 W to zero (in about 23 s). The portion used to raise the
temperature of the heat pipe structure and liquid in the condenser increased accordingly. As
a result, the condensation rate decreased, causing the vapor pressure to increase faster, and
the evaporation rate in the evaporator to temporarily drop (Figure 6.3).

At 534 s, the heat pipe is fully-thawed, and a larger portion of the input power is
consumed in raising the thermal inertia of the heat pipe structure and working fluid, causing
- the evaporation rate to drop even faster (Figure 6.3). After about 30 s, a uniform radial

temperature gradient was established in the condenser and proper circulation of liquid to the
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evaporator was fully resumed. Beyond this point, the heat pipe temperature and the
condenser output power rose gradually (Figures 6.4 to 6.6), approaching steady—state
when the rate of heat rejection in the condenser equals the power input to the evaporator.

This ends the presentation and discussion of the results of the frozen startup of a water heat

pipe. In the next chapter, the model is benchmarked using transient experimental data of a

fully-thawed horizontal water heat pipe.
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7. TRANSIENT CALCULATIONS OF FULLY-THAWED WATER HEAT
PIPE AND COMPARISON WITH EXPERIMENTAL DATA

The fully-thawed heat pipe model is benchmarked using transient experimental data of a
horizontal water heat pipe. The calculated steady—state vapor and wall axial temperature
profiles and the transient power throughput and vapor temperature are in good agreement
with measurements. Also presented and discussed are the calculated axial distributions of
liquid and vapor pressures, effective radius of curvature of the liquid meniscus at the
liquid—vapor interface, and liquid pooling and recession following a step function heatup

and cooldown transients of the water heat pipe.

7.1. DESCRIPTION OF THE WATER HEAT PIPE EXPERIMENT AND
MODELING

To verify the system of equations in HPTAM, the model predictions are compared with the
transient results of EI-Genk and Huang (1993) for a horizontal water heat pipe experiment.
The copper heat pipe, 1.73 cm 1.D., 1.91 cm O.D., employs a double-layered, 150 mesh
copper screen wick. The lengths of the evaporator, adiabatic, and condenser sections are
60 cm, 9 cm, and 20 cm, respectively (Figure 7.1). The vapor temperature is measured
along the centerline of the heat pipe using a special probe made of a thin walled brass tube
(3.2 mm O.D.) instrumented with eleven thermocouples, equally spaced along the heat
pipe. An additional eleven thermocouples are attached to the outer surface of the heat pipe
wall to measure its temperature at the same axial location as the vapor temperature
thermocouples. The evaporator section is uniformly heated using a flexible electric tape
and the condenser section is convectively cooled using a water jacket. More details on the

heat pipe design and experimental setup can be found in El-Genk and Huang (1993).

The experimental heat pipe was initially at room temperature (296.2 K) when the electrical
power to the heating tape in the evaporator section increased in a step—function to 575 W.
The cooling water enters the condenser cooling jacket at 294.5 K and 11.33 g/s. After
about 10 minutes into the heatup transient, the heat pipe reaches steady—state. At steady—
state, the effective power throughput, determined from the heat balance in the condenser
cooling jacket, was 443 W. The difference between the electric input to the electric tape
and the steady—state effective power throughput (132 W) was approximately equal (within

5%) to the heat losses from the surface of the insulation in the evaporator section to ambient
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by natural convection (El-Genk and Huang 1993). After about 7 minutes of steady—state
operation, the electrical power to the heating tape was turned off (t=1040 s), and the

cooldown of the heat pipe was observed.

Because the water flow rate in the cooling jacket is relatively small, a transient one—
dimensional water jacket submodel was thermally coupled to the condenser wall in
HPTAM in order to calculate the axial distribution of the coolant bulk temperature in the
jacket. At steady-state, the average convective heat transfer coefficient in the jacket
determined from the experiment was 1800 W / m2.K; this value is used in the model during
the simulation. The wick thickness assumed is 0.75 mm, and wick effective pore radius,
porosity and permeability were taken as 54 pum, 0.9 and 1.5x10-2 m2, respectively. The
effective thermal conductivity of the liquid—wick region is calculated using the equation
given by Chi (1976) for distributed cylinders having an effective porosity of 0.5. The
evaporation accommodation coefficient in Equation (3.18) was taken as 0.1 for water
vapor, and the initial vapor void fraction in the wick was assumed uniform along the heat

pipe, with a value of 0.15.

7.2. COMPARISON OF THE MODEL WITH WATER HEAT PIPE
EXPERIMENT

To account for the actual heat input to the heat pipe evaporator section during the
experiment, transient calculations were performed using the measured transient wall
temperatures along the evaporator section. This approach gives good estimate of the input
heat flux in the evaporator region, without the complexity and uncertainty associated with
modeling the thermal response of the electric heater and of the insulation along the
evaporator section. Comparison with the experimental results shown later confirm the
validity of using the transient wall temperatures to determine the heat input to the evaporator
region of the heat pipe. In the experiment, the wall temperature in the evaporator section
was measured at 7 axial locations and found to be uniform. The design and operational

parameters of the experimental water heat pipe analyzed are listed in Table 7.1.
Figures 7.2 and 7.3 compare the calculated transient response of the vapor temperature and

of the effective power throughput, determined from the heat balance in the cooling jacket,

with experimental data. The calculated effective power throughput at steady—state (455 W)
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TABLE 7.1.
Analyzed.

Design and Operational Parameters of Experimental Water Heat Pipe

Design Parameter Value  Operational Parameter Value
Heat pipe length L (cm) 89 Initial pipe temperature (K) 296.2
Evaporator length Le (cm) 60 Initial pore void fraction 0.15
Condenser length L¢ (cm) 20 Startup mode Evaporator wall
Adiabatic length Ly (cm) 9 temperature specified
Pipe outer diameter (mm) 19.10  Shutdown mode Step function
Wall thickness (mm) 0.90  Evaporator wall temperature Uniform
Liquid/wick thickness (mm) 0.75  Evaporator maximum heat flux (W/cm?) 1.25
Effective pore radius (um) 54  Maximum power throughput (W) 450
Wick porosity € 0.7  Condenser cooling method Convective
Wick permeability (m2)  1.5x10-9  Jacket coolant flow rate (gram/s) 11.33
Wall material Copper  Jacket coolant inlet temperature (K) 294.5
Working fluid Water  Jacket heat transfer coefficient (W/m2K) 1800.

is almost the same as that reported in the experiment (443 W). However, the transient
response of the calculated power throughput is somewhat faster than that in the experiment.
This is because in the experiment, a relatively large fraction of the heat generated in the
electric tape is initially stored in the insulation surrounding the evaporator and adiabatic
sections and in the condenser jacket, therefore slowing down the heat pipe transient. As
shown in figure 7.3, the calculated transient vapor temperature compares very well with
experimental measurements. At steady-state, the calculated vapor temperature was only
1.2 K lower than that measured. Such good agreements at steady-state suggest that the
model can predict the thermal resistance of the heat pipe quite well. Figure 7.4 compares
the calculated wall and vapor temperatures along the heat pipe with those measured at
different times during the heatup transient; again the comparison is good. The difference
between calculated and measured wall temperatures in the condenser section is attributed to

the fact that an axially uniform convective heat transfer coefficient is used along the cooling
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jacket. Also, the condensation rate at the L-V interface decreases along the condenser, due
to the increase in the cooling water temperature. Finally, the effects of end bases that are
observed in the experiments during the heatup transient (Figure 7.4a) are not calculated
numerically since both ends of the heat pipe are assumed thermally insulated. As figure 7.4
shows, the calculated vapor temperature is nearly uniform along the heat pipe and in good
agreement with experimental values. Such good agreement between HPTAM and the
transient experimental data of the water heat pipe verifies the soundness of the system of

equations and the modeling approach used for fully—thawed heat pipes.
7.3. WICK VOID FRACTION AND LIQUID POOLING RESULTS

In Figure 7.5, the vapor pore void fraction, op, is normalized to its initial value of 0.15.
At the beginning of the heatup transient, the liquid temperature and volume increase
rapidly, causing the vapor void fraction in the wick to decrease at a relatively uniform rate
(Figure 7.5). Because of the evaporation and condensation in the heat pipe, the void
fraction decreases (or the radius of curvature of the liquid meniscus increases) faster in the
condenser than in the evaporator. In the evaporator, liquid evaporation competes with the
liquid compressibility effect by removing mass, while condensation adds up to the increase
in fluid volume along the condenser. During this period of decreasing wick void fraction,
the liquid pressure is lower than the vapor pressure. The pressure difference decreases
with time and eventually vanishes after about one minute into the transient (Figure 7.6). At
this time, a wet point appears and excess liquid begins to accumulate at the end of the
condenser section, forming a water pool (Figure 7.7). At the wet point, the L-V interface
is flat (or the pore void fraction is zero) and the liquid and vapor total pressures are equal.
The first wet point appears at the end of the condenser because the full length of the
condenser became operational before liquid pooling could occur. The situation would have
been different if a larger amount of working fluid had been introduced in the heat pipe (see
Chapter 8). After the formation of the liquid pool, any increase in liquid volume due to
thermal expansion is accommodated in the pool (Figure 7.7). Essentially, the structure of
the L-V interface is governed by evaporation, condensation, and the liquid flow return. as
shown in Figure 7.5, the vapor void fraction recovers along the heat pipe, except in the
flooded portion of the condenser. As the effective power throughput in the water heat pipe
increases, the pressure losses in the liquid-wick region increase, and the wick void fraction
at the beginning of the evaporator rises in order to provide the necessary capillary pressure

head needed to circulate the liquid in the wick. Before reaching steady—state, the rate of
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evaporation is greater than the liquid flow return from the condenser to the evaporator. In
the condenser, the vapor pressure recovers, as the rate of liquid removal is greater than the

rate of condensation.

At steady—state, the liquid pool extends to about 1.7 mm (Figure 7.7). Figures 7.8 and 7.9
show the calculated axial distributions of the liquid and vapor pressures at steady—state. At
a power throughput of 455 W, a vapor pressure recovery of 66% occurs along the
condenser section. Figure 7.9 shows that the liquid pressure losses in the wick region are
much larger than the vapor pressure losses. This is expected since the liquid is flowing
across a relatively tight wire—screen wick. Figure 7.9 also shows that the vapor and liquid
total pressures are equal at the end of the condenser, where it is flooded. As delineated in
Figure 7.10, at steady-state, the vapor void fraction in the wick is highest (or liquid
meniscus radius of curvature is smallest) at the beginning of the evaporator and decreases
to zero at the end of the condenser. Figure 7.11 shows the axial distribution of the
evaporation and condensation rates along the heat pipe. At steady—state, evaporation is
uniform along the evaporator, while condensation decreases along the condenser due to the
increase in temperature along the cooling jacket (Figure 7.4). Some evaporation and
condensation occurs in the adiabatic section due to the effect of axial conduction in the wall

and liquid—wick regions.

After 17 minutes of heatup transient (1040 s), the electrical power to the heating tape was
shut off. However, the water was kept running in the cooling jacket. During the first
period of the cooldown, the wick void fraction decreases (or the liquid meniscus rises)
along the heat pipe, as shown in Figures 7.5 and 7.10. Subsequent decrease in liquid
volume due to thermal compressibility causes the liquid pool to recede (Figure 7.7). As
Figure 7.11 shows, the rate of evaporation decreases faster than the rate of condensation,
causing the mass of vapor in the heat pipe to decrease with time. This inequality between
evaporation and condensation rates causes the vapor void fraction in the wick to decrease
faster in the condenser than in the evaporator. After 1142 s of the transient, the liquid pool

disappears (Figure 7.7).

From then on, the structure of the L-V interface is generally governed by the thermal
compressibility of the liquid phase. Because the liquid temperature and volume decrease
rapidly, the vapor void fraction in the wick increases at a relatively uniform rate (Figures
7.5 and 7.10), and so does the difference between the vapor and liquid pressures (Figure

7.6). The difference between the vapor void fraction in the evaporator and the condenser is
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governed by the evaporation/condensation rates, or the power transported through the heat
pipe. As the heat pipe cools down, the wick void fraction along the heat pipe becomes

more uniform and returns to its initial value of 0.15.

Figure 7.12 shows the transient variation of the centerline vapor velocity at the exit of the
evaporator. During the heatup and cooldown transient phases, the vapor velocity increases
above its full-power steady—state value of 10 m/s, for short periods of time. The first peak
occurs because the heat transport capability of the heat pipe increases faster than the mass
of vapor in the core. The second peak occurs at the beginning of the cooldown phase and
is related to the imbalance between evaporation and condensation. After the electrical
power in the evaporator was cut off, the rate of evaporation decreased faster than the rate of
condensation. As a result, the vapor traveled fast toward the L-V interface along the
condenser section, resulting in a rapid decrease in vapor mass in the evaporator and

increase in the vapor velocity.

After 2000 s of transient, steady—state operation is established again; however, the
temperatures are slightly different from the initial condition. As Figure 7.2 shows, the
steady—state power throughput is about 13 W, with a centerline vapor velocity of 2.5 m/s
(Figure 7.12). Also, Figure 7.5 shows a vapor void fraction distribution that is not quite
uniform. This is because the temperature is not uniform along the heat pipe. After
cooldown, the temperature of the evaporator wall equals room temperature (296.2 K),
while the condenser wall is slightly cooler because the cooling water enters the condenser
jacket at 294.5 K.

In the next chapter, the effects of input power and initial liquid inventory in the heat pipe on
the wet point and liquid pooling, and on the vapor and liquid pressure and temperature

distributions are investigated in details.
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8. ANALYSIS OF WET POINTS AND LIQUID POOLING (WATER
HEAT PIPE)

Results of the transient operation of a water heat pipe subject to various heating conditions
and having different working fluid inventories are presented. In this chapter, the
liquid/wick region is treated as a liquid open—annulus. Design and operational parameters
of the heat pipe for the four cases analyzed are listed in Tables 8.1 and 8.2. At the startup,
the heat pipe is initially at a temperature of 300 K, and the 20—cm-long evaporator is heated
uniformly with an exponential period T = 5 s, while the 80-cm-long condenser is
convectively cooled by a water jacket. For the purpose of determining the temperature
distributions in the various regions as well as the distributions of the vapor and liquid
pressures, the numerical scheme employs 6, 2, and 2 radial cells in the vapor, liquid/wick
and wall regions respectively, and 6, 6, and 18 axial cells in the evaporator, adiabatic and

condenser regions, respectively. As indicated in Table 8.2, four cases are investigated,

TABLE 8.1. Design and Operational Parameters of Water Heat Pipes Analyzed.

Design Parameter Value  Operational Parameter Value
Heat pipe length L (cm) 120 Initial pipe temperature (K) 300
Evaporator length Le (cm) 20  Initial pore void fraction 0.02 -0.20
Condenser length L¢ (cm) 80  Startup mode Exponential
Adiabatic length Ly (cm) 20 heating
Pipe outer diameter (mm) 25  Shutdown mode Step function
Wall thickness (mm) 1.0 Evaporator radial heat flux Uniform
Liquid/wick thickness (mm) 1.0 Evaporator maximum heat flux (W/cm?2) 1-5
Effective pore radius (itm) 50  Evaporator exponential heating periodT  Ss
Wick porosity € 0.7  Condenser cooling method Convective
Wall material Copper  Water jacket average temperature (K) 300
Working fluid Water  Jacket heat transfer coefficient (W/m2K) 1000
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TABLE 8.2. Comparison of Operational Parameters of Water Heat Pipes

Investigated.

PARAMETER Case 1 Case 2 Case 3 Case 4
Evaporator heat flux (W/cm?) 1 2 2 5
Initial pore void fraction 0.02 0.10 0.12 0.20
Liquid inventory (gram) 82.805 82.332 82.295 82.148
Vapor pressure recovery

at time of wet point 0.5% 36.8% no wet 66.0%
point

each with different working fluid inventory and maximum evaporator heat flux. In these
cases, the maximum evaporator heat flux ranged from 1 W/cm? to 5 W/cm2. The masses
of working fluid introduced in the pipe were such that initially the liquid meniscus at the
liquid—-vapor (L-V) interface is concave everywhere, so that the pressure of the vapor
phase is greater than that of the liquid phase. A greater mass of working fluid corresponds
to a smaller initial vapor pore void fraction at the LV interface. As the liquid water in the
heat pipe heats up, the excess volume due to thermal expansion will be accommodated in
the pores of the wick, and it may flatten the L-V interface at some point during the
transient; such occurrence is referred to herein as the “wet point”. Results on the effects of
water inventory and maximum heat flux on the “wet point” location and potential liquid

pooling at the end of the condenser are presented in the following sections.
8.1. LIQUID POOLING AT END OF CONDENSER

Figures 8.1a and 8.2a show the interfacial pressures and pore void fraction distributions of
Case 4 at the occurrence of the first wet point. Because the vapor pressure recovery in the
condenser is relatively high (66%), the wet point is located close to the beginning of the
condenser region. At the wet point, the L-V interface is flat and the pore void fraction is
zero. Further thermal expansion of the liquid phase increases the liquid pressure causing
the wet point to advance along the condenser region (Figures 8.1b and 8.2b). Eventually,
the wet point reaches the end of the condenser, and the excess liquid begins to accumulate

at the end of the condenser (Figures 8.1c and 8.2¢). Notice that wetting of the entire
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condenser occurs within a very short time, only 19 ms after the occurrence of the first wet
point. Also, the maximum pore void fraction (or smallest radius of curvature of the liquid
meniscus) occurs at the beginning of the evaporator, and before flooding of the wick

occurs (wet point), the void fraction recovers along the condenser.

The effects of varying the liquid inventory and the evaporator input power on the position
of the wet point are delineated in Figures 8.3 and 8.4. When the vapor pressure recovery
is small compared to the liquid viscous pressure drop in the condenser region, the wet point
occurs at the end of the condenser region (Case 1, Figure 8.3). If the pressure recovery
exceeds the liquid pressure drop in the condenser, the wet point occurs at some
intermediate position in the condenser (Case 2, Figure 8.4). For Case 3, the mass of the
working fluid was low enough that such flooding of the wick at the L~V interface does not
occur even after 2 minutes into the transient, at which time steady-state operation is
reached. Therefore, by decreasing the operating maximum evaporator heat flux and/or the
liquid inventory in the heat pipe, pooling of liquid at the end of the condenser can be

avoided.
8.2. TRANSIENT RESPONSE OF WATER HEAT PIPE

As shown in Figures 8.5 to 8.7, in Case 4, the heat pipe reached steady-state after about
110 s. Figure 8.5 shows that at the beginning of the transient, the input power to the
evaporator is higher than the output power to the condenser, by the amount stored in the
wall, liquid and vapor regions. As the transient progresses, the output power approaches
the input power and the difference between the two disappears as the heat pipe reaches
steady—state, at a power throughput of 785 W. After 120 s (or 10 s after reaching steady—
state), the evaporator input power is cut off, and the heat pipe begins to cool down. The
heat pipe returns to its initial temperature and void fraction distribution, 100 s after the
power is cut off (Figures 8.6 and 8.7). At 24 s after the initiation of the transient, a liquid
pool forms at the end of the condenser (Figure 8.8). This pool, however, remains
relatively small, extending to a maximum of 0.58 mm at full-power (steady—state). After
the input power is cut off, the pool recedes very quickly, and disappears in about 11 s.
Also, the pore void fraction increases and the condenser becomes fully dewetted (Figure
8.7).
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8.3. HEAT PIPE CHARACTERISTIC PERIOD

It is interesting to analyze the transient response of the heat pipe in terms of its characteristic
periods. Indeed it is found that, except during the early startup until the formation of the
liquid pool (from O s to 24 s) and during the pool recession phase (from 120 s to 131 s),
the condenser output power, evaporation/condensation mass fluxes and pore void fractions
varied at a characteristic exponential period T = 14.9 £ 0.1 s. This period applies both
during the exponential heating phase and the step—function cooldown phase, and is
therefore characteristic of the water heat pipe analyzed (Case 4). This period is expected to
vary with the pipe geometry, temperature levels of interest (since most properties, such as
heat capacity and thermal conductivity, are temperature dependent) and the type of

condenser cooling (convective or radiative); further work will investigate these effects.
8.4. TRANSIENT VAPOR PRESSURE RECOVERY

Issacci et al. (1988) and Faghri and Chen (1989), in their simulation of the steady—state
operation of water and sodium heat pipes, have reported pressure recoveries up to 90% of
the vapor pressure drop along the condenser and flow reversal at the end of the condenser.
This behavior intensifies as the input power, and consequently the radial Reynolds number
of the vapor increases. Similar behavior is also detected by our model. Figure 8.9a shows
the vapor pressure axial profile, normalized with respect to the maximum vapor pressure at
the beginning of the evaporator (Figure 8.9b), at different times during the heatup transient.
As the input power is increased with time, both the pressure level and the vapor pressure
recovery in the condenser region increase dramatically. The vapor pressure recovery in the
condenser reached a maximum value of 72% at steady-state, at a power throughput of 785
W (after 120 s of transient). Because the vapor pressure at this input power is 3 times that
at startup, a small time step is needed to accurately predict the heat pipe transient response.
The time step must be much smaller than both the exponential heating period (5 s) and heat
pipe’s characteristic period (14.9 s). These calculations were performed with a time step of
25 ms.

8.5. VAPORIZATION RATES AND TEMPERATURE PROFILES
Figure 8.10a shows the variation in the radial evaporation/condensation mass flux at the L—

V interface along the heat pipe at different times during the transient. After a very short

transient time (less than 2 s), the radial mass flux profile becomes uniform in both the
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evaporator and condenser regions. However, condensation also occurs along the adiabatic
section during the transient because the liquid and wall temperatures are cooler in this
region. The condensation mass flux in the adiabatic region progressively disappears with
time as the heat pipe reaches steady-state (at 120 s).  Results in Figure 8.10 show that
during the transient the evaporation and condensation mass fluxes in the evaporator and
condenser regions, respectively, increase with time, reaching their highest values at steady—
state. It is interesting to note that during steady state operation, the evaporation—
condensation mass flux at the L-V interface is uniform in both the evaporator and

condenser regions, as it is assumed by simplified theories.

Figure 8.11 shows the calculated outer wall and liquid axial temperature profiles at different
times during the heatup transient. These temperatures are axially uniform in the evaporator,
adiabatic section and condenser, with sharp changes at the transitions between these
regions. These results suggest that the heat is transferred mainly by radial conduction in
the wall and liquid/wick regions, and that axial conduction insignificantly affects the water
heat pipes transient. The radial temperature drop across the wall is also negligible (0.2 K)
due to the high thermal conductivity of the container material (about 400 W/m K for
copper). However, the radial temperature drop in the liquid/wick region in the evaporator
is significant (42 K) because of the poor thermal conductivity of water (about 0.65
W/m.K), hence justifying using a two—dimensional modeling approach of the heat pipe.
With a wick porosity of 0.70, the added conductance of the copper mesh has effectively
increased the conductivity of the working fluid in the wick region by only a factor of 1.85.
This poor conductance of the water/wick region results in a relatively large temperature
drop along the pipe (44 K at the maximum steady—state power throughput of 785 W).

Because the liquid flow in the wick is very slow, conduction is the dominant mode of heat
transfer in this region. It is worth noting that the radial temperature difference between the
outer wall surface and liquid at the LV interface in the adiabatic section is negligible at
steady-state, but it is as much as 9 K after 10 s into the transient.

8.6. VISCOUS DISSIPATION
Results show that the viscous dissipation peaks at the midplane and vanishes towards the

axial ends of the heat pipe. While the viscous dissipation in the liquid phase is three orders

of magnitude smaller than that in the vapor region, the latter peaks up to 180 W/m3 in the
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vapor region, at the end of the condenser. Consequently, the primary effect of viscous
dissipation is to increase the vapor temperature near the center of the pipe. This effect is
however three orders of magnitude smaller than that for liquid—metal heat pipes, and is

negligible for water heat pipes.

This chapter ends the analysis of the transient operation of low—temperature (water in the
present case) heat pipes. The next chapter presents steady-state results of a lithium heat
pipe operating at a temperature level of 1250 K and a power throughput of 6.5 kWt.
Results show that high evaporation and condensation rates can generate significant

recovery of vapor pressure and non-negligible viscous dissipation rates in the vapor space.
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9. STEADY-STATE OPERATION OF FULLY-THAWED LITHIUM
HEAT PIPE

Steady-state results of a lithium heat pipe operating at a temperature of 1250 K are
presented herein. The lithium heat pipe evaporator is uniformly heated, while its condenser
is radiatively cooled. At such a high temperature, viscous flow conditions are prevalent in
the vapor core region. Design and operational parameters of the lithium/niobium heat pipe
analyzed are listed in Table 9.1. In the radial direction, 5, 3, and 2 computational cells are
used in the vapor, liquid/wick and wall regions respectively, while 8, 4, and 8 axial cells
are used in the evaporator, adiabatic and condenser regions, respectively (Figure 9.10).
Note that, even so modeling of the liquid/wick region as a porous medium has been
incorporated into the heat pipe transient model, the sample calculations presented in this
chapter (and the preceding Chapter 8) were performed for a liquid open-annulus.

TABLE 9.1. Design and Operational Parameters of Lithium Heat Pipe Analyzed.
Design Parameter Value  Operational Parameter Value
Heat pipe length L (cm) 150  Initial pipe temperature (K) 1250
Evaporator length Le (cm) 60  Initial pore void fraction 0.1
Condenser length L¢ (cm) 60  Mass of working fluid (gram) 35.538
Adiabatic length Ly (cm) 30
Pipe outer diameter (mm) 26.72  Evaporator radial heat flux Uniform
Wall thickness (mm) 1.60  Evaporator maximum heat flux (W/cm?) 12.8
Liquid/wick thickness (mm) 0.76  Input power (W) 6470
Effective pore radius (1um) 50  Condenser cooling method Radiative
Wick porosity € 0.7  Space/ambient temperature (K) 300
Wall material Niobium  Wall emissivity 1
Working fluid Lithium  View factor 1
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9.1. PRESSURE PROFILES AND VAPOR PRESSURE RECOVERY

Issacci et al. (1988) and Faghri and Chen (1989), in their simulation of the steady—state
operation of water and sodium heat pipes, have reported pressure recoveries up to 90% of
the vapor pressure drop along the condenser and flow reversal at the end of the condenser.
This behavior intensifies as the input power, and consequently the radial Reynolds number
of the vapor increases. Similar behavior is also detected by our model. Figure (9.1)
shows the axial profile of the vapor pressure at steady—state. The vapor pressure recovery
in the condenser reached a value of 49%, at a power throughput of 6470 W.

At steady—state, radial gradients of static pressure are negligible in both the liquid and vapor
regions. This is found to be always true in the vapor region, but untrue in the liquid region
during transient operation. At steady-state the returning liquid flow from the condenser to
the evaporator is fully established as shown in Figures (9.9) and (9.10), and there is no
radial pressure gradient in the liquid region (Figure 9.2). Note that the flow is found to be

symmetric since the evaporator and condenser lengths are equal.
9.2. VAPOR PORE VOID FRACTION

The mass of working fluid introduced in the heat pipe is such that at steady—state, no liquid
pooling occur red. As shown in Figure (9.3), the total interfacial pressure of the vapor
phase is greater than that of the liquid phase, and the liquid meniscus at the L-V interface is
concave everywhere, even in the condenser region, so that the pore void fraction is positive
(Figure 9.4). Note the recovery of the pore void fraction along the condenser, which
follows the vapor pressure recovery in this region.

9.3. TEMPERATURE PROFILES

Figure (9.5) shows the calculated steady-state temperature distributions in the wall and
liquid-wick regions of the lithium heat pipe. The total radial temperature drop across the
wall and the liquid—wick combined thicknesses is about 6 K in both the evaporator and
condenser regions at a steady—state throughput power of 6470 W. Such a small
temperature drop is due to the high thermal conductivity of the container material (niobium)
and the liquid lithium. The maximum temperature difference along the pipe wall is 22 K,

which is small compared with the pipe average temperature of 1250 K (see Figure 9.5).
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These results suggest that the heat is transferred mainly by radial conduction in the wall and
liquid—wick regions, and that axial conduction insignificantly affects the heat pipe transient.
Because the liquid flow in the wick is very slow, conduction is the only mode of heat
transfer in this region. It is worth noting that the radial temperature difference between the
outer wall surface and liquid at the L-V interface in the adiabatic section is negligible at

steady—state.
9.4. VISCOUS DISSIPATION

Results presented in Figures (9.6) and (9.7) show that the viscous dissipation profile in
both the liquid and vapor regions peaks at the axial midplane and vanishes towards the ends
of the heat pipe. As expected, this axial profile is similar to that of the velocity field.
Radially, the peak of the viscous dissipation is located in the vicinity of the liquid—vapor
interface, where the shear stress is maximum. Very close to the interface, the axial velocity
is too small, while the shear stresses are negligible near the centerline of the pipe. While
viscous dissipation is less than 7 W/m3 in the liquid phase (Figure 9.7), it peaks at about
230 kW/m3 in the vapor region (Figure 9.6). Consequently, the primary effect of viscous
dissipation is to increase the vapor temperature near the center of the pipe. These results
clearly suggest that while viscous dissipation in the liquid phase could be neglected, it is
not negligible in the vapor region of liquid-metal heat pipes. Neglecting viscous
dissipation in the vapor could underpredict the vapor temperatures. Note that the vapor
viscous dissipation curve at R=10.56 mm indicates that flow reversal is occurring at the
end of the condenser region. Similar results have been reported by other investigators
(Issacci et al. 1988; and Faghri and Chen 1989).

9.5. EVAPORATION / CONDENSATION RATES

Figure (9.8) presents the axial profile of the evaporation/condensation mass flux along the
lithium heat pipe. It is interesting to note that at steady—state, the evaporation/ condensation
mass flux at the L-V interface is uniform in both the evaporator and condenser regions, as
it is assumed by simplified theories. The evaporator and condenser lengths of the heat pipe

are equal, and there is no evaporation or condensation along the adiabatic section of the heat

pipe.
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10. SUMMARY AND CONCLUSIONS

Heat pipes are highly reliable and efficient energy transport devices, which are being
considered for many terrestrial and space power thermal-management applications, such as
high—performance aeronautics and space nuclear and solar dynamic power systems. In this
work, a two—dimensional Heat Pipe Transient Analysis Model, "HPTAM", was developed
to simulate the transient operation of fully—thawed heat pipes and the startup of heat pipes
from a frozen state. The model incorporates: (a) sublimation and resolidification of
working fluid; (b) melting and freezing of the working fluid in the porous wick; (c)
evaporation of thawed working fluid and condensation as a thin liquid film on a frozen
substrate; (d) free—molecule, transition and continuum vapor flow regimes, using the
Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and
hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the
radius of curvature of the liquid meniscus at the liquid—vapor interface and the radial
location of the working fluid level (liquid or solid) in the wick. It also includes the
transverse momentum jump condition (capillary relationship of Pascal) at the liquid—vapor
interface and geometrically relates the radius of curvature of the liquid meniscus to the
volume fraction of vapor in the wick. The present model predicts the capillary limit and
partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling
submodel, which simulates accumulation of the excess liquid in the vapor core at the

condenser end.

HPTAM can handle both rectangular and cylindrical geometries. The model divides the
heat pipe into three transverse regions: wall, wick, and vapor regions, and solves the
complete form of governing equations in these regions. The heat pipe wick can be a wire—
screened mesh, an isotropic porous medium such as a powder or a bed of spheres, or an
open annulus separated from the vapor core by a thin sheet (with small holes to provide
capillary forces). HPTAM incorporates several working fluids such as lithium, sodium,
potassium and water, as well as various wall materials (tungsten, niobium, zirconium,
stainless—steel, copper and carbon). Evaporation, condensation, sublimation and
resolidification rates are calculated using the kinetic theory relationship with an

accommodation coefficient of unity.

To predict the flow of liquid in the porous wick of the heat pipe, HPTAM uses the

Brinkman-Forchheimer—extended Darcy model. A submodel was developed to calculate
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the effective hydrodynamic properties of wire-screened wicks, such as volume porosity,
permeability and effective pore size. This submodel was verified using measured
characteristics of wicks found in the literature. Also several models for calculating the
effective thermal conductivity of wicks were reviewed and compared with experimental
data. Based on the results, Maxwell's equation for distributed cylinders is recommended to
calculate the effective radial thermal conductivity of wire—-screened wicks, while the parallel
model is best for calculating the axial thermal conductivity of such wicks. The model of
Veinberg for distributed spheres is most accurate for estimating the effective thermal
conductivity of isotropic porous media such as ceramic powder, metallic felt or sintered
metal. The Brinkman-Forchheimer—extended Darcy model was successfully benchmarked

against experimental data for natural convection of molten gallium in a porous bed of glass
beads.

HPTAM handles the phase—change of working fluid in the wick using a modified fixed—
grid homogeneous enthalpy method. The large numerical error and sometimes poor
stability characteristics and convergence rates of existing fixed—grid enthalpy formulations
are caused by improper handling of the evolution of the latent heat and discretization of the
convection—diffusion energy fluxes. A very small 8T must be used to simulate the phase—
change of a pure substance. When 8T is small, the v-T relationship closely approximates a
step function, and many schemes using the enthalpy formulation have experienced
numerical difficulties. The present numerical technique, however, employs a mushy—cell
temperature range as small as 2x10-8 K (limited by machine accuracy only), without
requiring under-relaxation of the temperatures and generating numerical instabilities. The
use of the conventional harmonic mean discretization scheme (HMDS) of Patankar to
estimate the heat fluxes at the boundaries of the mushy cell is largely responsible for the
loss in accuracy and the generation of wiggly temperature time histories. The larger the
change in thermal diffusivity of the working fluid upon melting, the worse are the results.
Indeed, the thermal diffusivity of the solid phase is quite different from that of the liquid
phase for most materials. Instead of using the HMDS, a simple method, based on the
frozen volume fraction, was developed to calculate the heat fluxes at the boundaries of the
mushy cell. This method improved the accuracy of the solution and reduced the
oscillations in temperature time histories (usually encountered when the HMDS is used) by

one—to—two orders of magnitude.

The wide interest in heat pipes has stimulated the development of numerous models.

Because the transient operation of heat pipes and the startup of heat pipes from a frozen
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state involve several highly non-linear and tightly coupled heat and mass transfer processes
in the vapor, wick and wall regions, mathematical modeling of these problems is quite
complex. Even so they used oversimplifying assumptions, several investigators
encountered numerical instabilities (Costello et al. 1988; and Peery and Best 1987) when
attempting to model the operation of heat pipes. Extremely small time steps (10-4 s) were
required to solve iteratively for the coupled energy and kinetic theory equations. This
constraint on the time step was previously reported by Subbotin when using his model for

predicting evaporation / condensation rates.

Not the least contribution of this work was to develop a stable solution procedure that is
accurate and efficient in terms of CPU time. Two segregated solution techniques, one
based on the non-iterative Pressure Implicit Splitting Operator (PISO), and the other based
on the SIMPLEC segregated iterative technique, were developed and tested for their
stability and effectiveness in reducing the CPU time while maintaining the accuracy of
results. The most efficient technique, HPTAM-Revised, is a SIMPLEC-type segregated
solution technique which includes two internal iterative steps to resolve the pressure—
velocity and temperature—velocity couplings and reduce the linearization errors of the
kinetic theory relationship and equations of state. The solution evaluates the volume of the
vapor in the wick explicitly, while the kinetic theory relationship is implicitly coupled with
the energy jump condition at the L-V interface. Other solution techniques examined
required using a small time step size (< 15 ms) to avoid numerical instabilities. On the
other hand, a time step size as high as 500 ms could be used with the HPTAM-Revised
technique without developing any numerical instability. While all solution techniques
examined performed the same in terms of accuracy, the HPTAM-Revised is about 90 times
faster than the basic non—iterative SIMPLE~type approach.

Various linear-system solvers were also examined to determine which one was most
efficient for solving the problem at hand. To solve the five~point linear Poisson equations
resulting from the discretization of the mass balance equations, a direct solution routine
using Gaussian elimination was developed. The banded version of the solver allowed
significant decreases in computation time and memory storage requirement. The selection
of the appropriate linear-system solver clearly affects the efficiency of the solution
technique, particularly when computational grids larger than 10x30 are used. For example,
when solving a typical heat pipe problem using a 20x40 size grid, more than 90% of the
total CPU time is used by the banded Gauss—elimination solver. Calculations showed that,

when the iterative SIS solver is used instead of the banded Gauss—elimination solver for the
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solution of the 5—-point momentum and energy linear systems, the total CPU time was only

48% of that for the technique using the Gauss—elimination solver.

The development of this comprehensive model was guided by continuous benchmarking of
the model predictions with available experimental and numerical results. The accuracy of
the physical and numerical schemes for modeling heat and mass transfers in the wick was
verified using various benchmark problems, namely: (a) natural convection of liquid in a
square cavity; (b) natural convection of molten gallium in a porous bed of glass beads; (c)
one—dimensional pure conduction solidification problem; (d) two—-dimensional pure
conduction problem of freezing in a corner; and (e) the freezing of tin in a rectangular

cavity in the presence of natural convection.

Numerical results of the frozen startup of a radiatively—cooled water heat pipe are
presented, which demonstrate the soudness of the physical model and numerical approach
used in HPTAM. The results illustrate the importance of the sublimation and
recondensation processes during the first period of the transient and the combined effects of
phase—change and liquid hydrodynamics in the wick during the startup of the low-
temperature heat pipe. The startup is characterized by partial recess of liquid in the
evaporator wick after the capillary limit has been reached. After enough working fluid was
melted by resolidification and condensation in the adiabatic and condenser sections of the
heat pipe, resaturation of the wick was established before complete dryout of the evaporator
occurred, leading to a successful startup. The present analysis identified the following
processes occurring sequentially during the startup of a radiatively cooled water heat pipe
from a frozen state:

— depletion of solid working fluid in the evaporator and accumulation in the adiabatic and
condenser sections via sublimation / resolidification;

— thaw of working fluid in the evaporator and decrease of liquid inventory in wick due to
evaporation and volume decrease upon melting;

— formation of a liquid film on the solid substrate in adiabatic and condenser regions due
to condensation of vapor;

— outward radial propagation of thaw front in adiabatic and condenser regions;

-~ recovery of liquid saturation in evaporator wick due to liquid circulation from
condenser;

— completion of heat pipe thaw and resumption of normal operation.
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Results also showed that the sublimation/resolidification process in the low-temperature
heat pipe has the beneficial effect of transporting a portion of the heat input from the
evaporator to the condenser, thus reducing the temperature difference between these two

regions, and accelerating the thaw process during the startup from a frozen state.

Previous investigations of the frozen startup of heat pipes generally assumed uniform
distribution of the working fluid in the wick. Such assumption is found to be invalid for
low—-temperature heat pipes. As the present calculations show, redistribution of frozen
working fluid in low—temperature heat pipes occurs during startup due to sublimation and
resolidification of vapor. Such phenomena has also been observed experimentally
(Kuramae 1992; and Ochterbeck and Peterson 1993). These processes may prevent
successful re—startup of the heat pipe during cyclic operation. The vapor resolidifies in the
cooler parts of the heat pipe and cannot return back to the evaporator. Eventually, the wick
might completely dryout in the evaporator. In cases of low—temperature heat pipes with
large evaporator—to—condenser length ratio, complete blockage of the vapor channel could

occur due to resolidification of working fluid (Ochterbeck and Peterson 1993).

The heat pipe model was validated using transient experimental data of a fully—thawed
water heat pipe constructed at the Institute for Space and Nuclear Power Studies. The
calculated steady—state vapor and wall axial temperature profiles and the transient power
throughput and vapor temperature were in good agreement with measurements. Results
illustrated the importance of the hydrodynamic coupling of the vapor and liquid phases and
showed the appearance during the heatup transient (disappearance during cooldown) of a
pool of excess liquid at the condenser end. These pooling phenomena were observed by
Merrigan et al. (1986) who studied experimentally the startup and shutdown transients of a
4 m-long cylindrical lithium heat pipe. They found that during normal operation, excess
working fluid pooled into the vapor core and filled approximately the last 50 cm of the
condenser. Finally, the effects of input power and initial liquid inventory in the water heat
pipe on the wet point and liquid pooling, and on the vapor and liquid pressure and

temperature distributions were investigated in details.
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11. RECOMMENDATIONS FOR FUTURE WORK

It is apparent that only a few startup experiments of low—temperature and high—temperature
heat pipes have been attempted in the literature, and that most experiments conducted have
basically been performance tests, rather than phenomenological investigations. It is not an
easy task to monitor phenomena occurring within a short distance in a closed pipe. For
example, because of practical limitations, no direct measurements of the actual progression
of the melting front and mass transfers associated with sublimation and resolidification
were possible. Experimental data available are limited to wall temperatures in most cases,
with few attempts made to measure the vapor pressure or temperature inside the heat pipe.
Therefore, there is a need for systematic theoretical and experimental studies of the transient
behavior of liquid—metal and non-liquid metal heat pipes. The outcome of these studies
would be useful to better benchmark calculation models for the design of reliable heat pipes
for space and terrestrial applications. The transient modes of interest are power step
changes, reversed heat pipe operation due to a condenser external heating, and the startup

of heat pipes from a frozen state.

Space experiments, which investigate the effect of microgravity in startup from a frozen
state, will be a welcome input for benchmarking the present model "HPTAM" and other
models in literature. Such research is necessary for future applications of heat pipe analysis

code to space thermal management and spacecraft thermal control system's operation.
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APPENDIX A. MODELING OF HEAT AND MASS TRANSFERS IN
POROUS MEDIA

Since the early work of Darcy in the nineteenth century, extensive investigations have been
conducted on flow and heat transfer through porous media, covering a broad range of
different fields and applications, such as ground—water hydrology, petroleum reservoir and
geothermal operations, packed-bed chemical reactors, transpiration cooling and building
thermal insulation. The first section of this appendix (Section A-1) describes the necessary
governing equations for modeling the flow of liquid in the porous wick of the heat pipe.
The Brinkman-Forchheimer—extended Darcy's flow equations approach the empirical
representation of the flow in a porous medium (the Forchheimer—extended Darcy flow
model) as the permeability of the porous wick, K, decreases, and reduce to the standard

Navier-Stokes equations as K goes to infinity.

The next section (A-2) focuses on the heat transfer in a partially frozen porous medium,
which contains a mixture of three phases: the solid and liquid phases of the working fluid,
and the solid matrix of the wick. The volume-averaged homogeneous enthalpy
formulation is best suited for modeling this difficult problem. This method offers several
advantages: (a) it employs a fixed—grid numerical scheme; (b) it accounts for the
complicated interfacial structures of the various constituents and is valid for any volume
fractions of the wick porous matrix and the liquid and frozen phases of the working fluid;
and (c) it does not necessitate implicit tracking of the liquid—solid interface.

Finally, analytical expressions of the hydrodynamic and thermal properties of the heat pipe
wick are presented in the last two sections of this appendix, and checked using

experimental measurements.

A-1. MODELING OF FLOW THROUGH POROUS MEDIA

Most analytical studies of flow through porous media have dealt primarily with a
mathematical formulation based on Darcy's law, which neglects the effects of solid
boundaries and inertial forces on fluid flow through porous media. To account for these
effects, Forchheimer and Brinkman extended Darcy's law, and other investigators

introduced the transient and convective inertia effects into their generalized flow equation.
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The form of the Brinkman—Forchheimer—extended Darcy's flow equations can be partly
justified through analytical volume-averaging of the microscopic conservation equations,
which provides a mean to identify the apparent viscosity in the Brinkman's term. It is then
postulated that Darcy's term and Forchheimer's extension are the necessary constitutive
relationships to model the unknown terms arising from the volume—averaging process.
A-1.1. Darcy's Law

The steady flow of a fluid through a fully—saturated homogeneous isotropic porous
medium is described by the empirical Darcy's equation (Darcy 1856):

vp=pE-HE1 | (A-1)
K

where

P,p and u are the pressure (Pa ), density (kg /m? ) and dynamic viscosity (kg /m.s ) of
the fluid, respectively,

F is the external acceleration (body forces, such as gravity, in m /52 ),
K is the permeability of the porous medium (m? ), and

g denotes the mean (area—averaged) filter velocity within the medium (m /s ).

Since it neglects any inertial and turbulent effects, Darcy's law is valid for very slow flow
conditions only. The inertial effect becomes important for high—porosity media or high
Rayleigh number regimes.

A-1.2. Forchheimer's Extension

For (unidirectional) high—velocity laminar and turbulent flows in a porous medium, it was

first suggested by Osborne Reynolds (1900) and later by Muskat (1937) that the axial
pressure gradient might be represented by the form:

—c:l—P = ajuq + bpq|q| : (A-2)

z

where a and b are constant for a given porous medium. The following explanation
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(Beavers and Sparrow 1969) may be offered to justify the form of Equation (A-2). For a
very slow flow, it is well established that the pressure gradient is a linear function of the
filter velocity ¢, and the coefficient a is the reverse of the permeability (see Equation
A-1). At higher velocities, departures from Darcy's law are due to inertial effects. The
inertial effects are reckoned as being proportional to pg? . The linear superposition of the
viscous and inertial effects embodied in Equation (A-2) cannot be justified on purely
theoretical grounds, nor can the assumption that b is independent of the velocity g. These
aspects of the proposed relationship require experimental justification. An analysis by
Ward (1964) showed that b = C/VK, where C is a dimensionless constant which has
been evaluated experimentally by various investigators. Ward (1964) found that for a large
variety of porous media C could be taken as a constant equal to approximately 0.55.
Despite the original belief that the “inertia coefficient" C was a universal constant, it is now
generally accepted that C is a function of the microstructure of the porous medium
(Beavers and Sparrow 1969).

Equation (A-2) can be rewritten in terms of the inertia coefficient as:

— = ﬁpq|qy . (A-3)

The second term on the right-hand side of Equation (A-3) is commonly referred to as the
Forchheimer's extension. As apparent from Equation (A-3), the ratio of pressure gradient
to filter velocity is a linear function of the velocity, so that K and C can be easily
determined from measurements of static pressure drops and mass flow rates by fitting a
straight line to the data. Indeed, experimental investigations (Ergun 1952; Ward 1964:
and Beavers and Sparrow 1969) for uni-directional flows of water and gases through
packed columns and fibrous materials showed the axial pressure distribution to be a linear

function of z .

In the literature, it is a common practice to express the pressure drop in terms of a friction
factor. Defining the characteristic dimension of a porous medium as the square root of the
permeability VK, the Fanning friction factor f, and the Reynolds number Re have the

following expressions:

238



dP
fa=—=1— - Re (A-4)
pq”|dz W
Identifying Equations (A-3) and (A-4) gives the following expression for f, :
Ha 2
fa:_‘@ ,_|+ch_ -1ic. (A-5)
pqz K \/E Re

It was found experimentally that f, varies inversely with the Reynolds number in the
laminar flow regime (Darcy flow) and becomes a constant at high Reynolds numbers . As
apparent from Equation (A-5), there is no distinct division between laminar, transition and

turbulent flows in porous media.

Ergun (1952) used experimental data on the flow of gases (CO,, N,, CH,4 and H») through
beds of granular solids of various shape (various—sized spheres, sand and pulverized coal)
and derived the following expressions for the permeability and inertia coefficient of packed

particle columns:

D> 3
- Pn . c=175 1 _0143 A
150 (1-¢)> {150 &€ &t (A-0)

where Dy, is a characteristic dimension which represents the mean diameter of the particles.
The mean particle diameter is generally that of a sphere having same specific surface S,
as the particles in the bed. For a sphere of radius R :

g, =41k’ _3
%nR3 R , (A-T)
and
Dy = SQ (A-8)
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Needless to say, while the determination of S, presents no problem for packed columns of
identical particles, it is technically difficult for porous media (Ergun 1952). A simple
consideration of theoretical possibilities of the structure of porous media makes one realize
that a general correlation between porosity and permeability cannot exist. It is obviously
quite possible for two porous media of the same porosity to have entirely different

permeabilities.

A much used modification of Kozeny's theory for the permeability of porous media was
postulated by Carman who derived the so—alled Kozeny-Carman equation:

1 & D ¢
582 (1-¢g)* 180 (1-¢)?

(A-9)

Other models have been proposed (see the excellent critical review of Scheidegger, 1974).
However, the Kozeny-Carman equation is widely used nowadays since it fits experimental
data for a large variety of porous media. Note that Equation (A-6) recommended by Ergun
is identical in form, with a slightly different constant (150 instead of 180; a value of 175
can also be found in the literature). Despite the facts that hydraulic radius theories utterly
fail to describe anisotropic structured bodies such as stiff-fissured clays and highly porous
fibrous media, the Kozeny—Carman equation is usually assumed to be unquestionable and
the method of determining the specific area S, of powders by measurement of permeability
(with the use of Equations A-3 and A-9) has achieved considerable popularity.

A-1.3. Brinkman's Extension

It 1s apparent that Darcy's Equation (A-1) neglects the viscous shear stresses acting on a
volume element of fluid; only the damping force of the porous medium has been retained,
thus Darcy’s law is only valid for low-permeability (low—porosity) media. Therefore,
there is a need for an equation that is valid for high—-permeability media and which reduces
to the Navier-Stokes equation as K— +eo. The well-known Navier-Stokes equation for

steady flow in a fluid phase, with negligible inertia terms, has the following form:
VP=pF+DivT , (A-10)

where T is the deviatoric stress tensor. For linear fluids (Newtonian), the deviatoric stress

tensor has the following form:
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= . = = [==\T - =
= 2u|D —%mva)Q==p[VU+(VU)—%(va)ﬂ, (A-11)

sl

and DivT reduces to uAﬁ for incompressible fluids (div U= 0). Based on this

analysis, Brinkman (1947) modified Darcy's law in the following way:
6P=pﬁ—%§+uuq , (A-12)

which has the advantage of approximating Equation (A-1) for low—permeability materials
and Equation (A-10) for large values of K. The factor u’is an effective dynamic viscosity
which may differ from the fluid viscosity u. Neale and Nader (1974) showed that in some
instances assigning (' the value of u provided a satisfactory correlation of experimental
data. This simplification was therefore recommended and appeared to be an established
practice. However, it is uncertain which apparent viscosity u' one should use, the fluid
viscosity y , or a viscosity that accounts for the concentration of the particles as Einstein's
correction does for dilute suspensions (u/u = 1+2.5x(1-€) ).

Lundgren (1972) attempted to resolve this issue by extending a statistical formulation to the
problem of a fixed bed of spheres. His predictions for u”/u , however, differ strongly
from that obtained by Einstein and from u'’/u = 1/6 when € <0.7. It is not clear which

of these correlations is more accurate for low values of €.

Tam (1969) pointed out that, whenever the spatial length scale is much greater than
5=\/(K,u'/,u ), Brinkman's term in Equation (A-12) is negligible. For large systems, this

means that Darcy's law is valid only outside of a boundary layer of thickness .

Neale and Nader (1974) pointed out that since the Brinkman's Equation (A-12) contains the
macroscopic shear stress, it is fully compatible with the existence of boundary layer regions
within porous media. Moreover, although the effective thickness of such regions is usually
quite small (in the order of \/K), their effects on unobstructed external flows can be
surprisingly significant. Outside the boundary layer region, the macroscopic shear term in
the Brinkman equation is negligible, indicating that Darcy's original law is valid

everywhere except in the immediate vicinity of permeable surfaces.
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By introducing the Forchheimer and Brinkman's extensions into Darcy's law, a generalized

flow equation for flow through porous media can be written as:
= - unug C o A=
VP:pF—ﬂ——piqlqm A . (A-13)
K VK

It is a common practice to define the Darcy number Da and Forchheimer number Fo as:

Da:E2 , and F0=$2C\/Da , (A-14)
L

where L is a characteristic length of the porous region (such as its thickness). Georgiadis
and Catton (1986, 1988) noted that Brinkman's term has negligible effect on the onset of
cellular Bénard convection if Da < 10-3. The magnitude of Da expresses the ratio
(Brinkman's term)/(Darcy drag) away from the solid boundaries. Near these boundaries,
the Brinkman term is significant because the shear increases to accommodate the no—slip

condition.
A-1.4. Transient and Convective Inertia Terms

An attempt to deduce the "turbulent” form of the Forchheimer flow equation was made by
Irmay (1958). This author retained all the inertia terms of the Navier-Stokes equations in
the microscopic flow channels and then built up a hydraulic radius model in a manner

similar to that of Kozeny (Scheidegger 1974):
dp ou
—-— =auq +bpq'q’+cp—— . (A-15)
dz ot

Irmay obtained ¢ =1 for the Kozeny model. After using the Dupuit-Forchheimer
assumption (which relates the interstical velocity U to the filter velocity g as: g = €U ),

dq

Irmay’s work resulted into adding the transient term PE? on the right-hand side of

Equation (A-2). This corresponded to the equation already postulated by Polubarinova-—
Kochina.
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Other investigators have supported the introduction of new convective inertia terms in
Equation (A-15), but have shown that the role of these additional terms is negligible for
low—permeability porous media. Later, Stark (1969) showed that, at high—flow velocity
the pressure deviates from that predicted by Equation (A-15). Stark proved that this

deviation was due to the convective inertia terms in the Navier—Stokes equations.

Therefore, by introducing the transient term and convective inertia terms in Equation
(A-13), the following empirical general flow equation for flow through porous media is
obtained:
P + inertia terms = pF — VP — Ha_ LplqlEl +u'Aq . (A-16)
€ ot K \jE

A-1.5. Local Volume-Averaging Technique

Developing a correct formulation of the problem of convection through porous media
remains a point of major contention in the literature. Fortunately, it is possible to derive
analytically general macroscopic balance equations that describe the flow and heat transfer
in porous media, through volumetric averaging of the microscopic conservation equations.
A comparison of these more general equations with the empirical equations mentioned
above gives some insight into the righteousness of the various heuristic extensions that
were derived somewhat independently. Such a comparison provides a means to identify
the apparent viscosity g’ in the Brinkman's term. Another advantage of the volume-

averaging formulation is that it offers an insight into the assumptions involved.

Following the analysis of Gray and O'Neill (1976, see also Cheng 1978), a two—phase
system is considered in which a denotes the fluid phase and 8 the solid matrix. The

porous medium is assumed to be fully—saturated. The averaging volume V is composed of
both the o and the 8 phase such that V = Vi + Vg, where Vyand Vg are the volumes
of the phases & and 8 in V, respectively. A phase average of some quantity y in the o
phase may now be defined by:

Wa)=L | wedv
V Vv

(A-17)
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where Y/ refers to the value of y in the o phase and is defined to be zero in the B phase.
An average formed by integration over only one phase (e. g., the o phase) is called an

intrinsic phase average and is defined by:

Vo v Vo |, . (A-18)

(o)

The second equality comes naturally since y,, is nul in the B phase. If the fraction of the
total volume occupied by the fluid phase « is denoted by &= V/V, then it is apparent
from Equations (A-17) and (A-18) that:

(Wo) = € (o) * (A-19)

When y, refers to the local fluid velocity, we can identify the filter velocity ¢ and the
average pore velocity U with the phase average and intrinsic phase average of yq

respectively, so that Equation (A-19) provides a mathematical verification of the Dupuit—
Forchheimer postulate (¢ = €U ).

Now it is assumed that the conventional Navier—Stokes equations for compressible fluid
describe the flow in the pores of the microstructure, and these equations are integrated over
the volume V. In order for the averaging process to lead to meaningful results, the
characteristic length / of the elementary volume V must be such that d << [ << L, where d
1s a microscopic characteristic length over which significant variations in the point
quantities occur, and L is a macroscopic characteristic length of the porous medium.
Averages of derivatives can be related to the derivatives of averages by the theorems of
Whitaker and Gray. The averages of products can be expressed in terms of the product
averages by the following relation (Gray and O'Neill 1976; and Cheng 1978):

(WoPa)* = Wo) %) * + (WoDo)* (A-20a)
where the rild notation denotes the deviation of a quantity from its phase average, that is:

Vo = Yo — (Ya)® (A-20b)
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After integrating the Navier-Stokes equation and performing all necessary analytical
transformations, Gray and O'Neill (1976) simplified the resulting macroscopic momentum
equations by assuming that density gradients at the microscopic level are very small in
comparison to the corresponding velocity gradients, and that the viscosity of the fluid is
approximately constant within the averaging volume V. These assumptions are appropriate
for slow flows of liquids through porous media, in which thermal and pressure gradients

are not too large. At this point, their motion equation takes the form:

pa—q+£7qq=pF-?P+EA€J+otherterms , (A-21)
godt ¢? £
where
— i =\ —
Pp={pa)®, P=(Py)*, and qE<Ua> = £<Ua> =eU . (A22)

The other terms (which are not reproduced here) involve the deviations of the fluid velocity
and pressure from their intrinsic averages, and a surface integral (over the fluid—solid
interfacial surface in the volume V') which accounts for the phase-averaged viscous drag of
the solid on the fluid.

In a similar manner as for the derivation of the turbulent flow equations, constitutive
relationships must be obtained to represent these other terms in a useful and practical
manner. For the flow of a Newtonian fluid through an isotropic medium, Gray and
O'Neill showed that the macroscopic momentum equation can be reduced to an equation
containing only five medium constants (porosity and permeability are two of them), that
could be evaluated from experiments. For our purpose, a comparison of the empirical
Equation (A-16) with Equation (A-21) suggests that the additional inertia and viscous terms
in Equation (A-21) can be represented by the Darcy-Forchheimer extension. Therefore,
the equation of motion for a Newtonian fluid through a fully—saturated isotropic porous
medium reads:

PIG_ PT==_ = op MA_ C 1 u,
E2+EV3g=pF-VP-22 - —olglg+EAg A-
a2 ad p ” thlq’q . A4 (A-23)

It is apparent that the flow Equation (A-23) is consistent with the Brinkman—Forchheimer—
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extended Darcy flow model, where the apparent viscosity g’ has the value p /e . Itis also
consistent with the postulates of Irmay concerning the transient term and that of other
investigators concerning the convective inertia term. The final attractive feature of Equation
(A-23) is that it approaches the empirical representation of flow in a porous medium (the
Forchheimer—extended Darcy flow model) as the permeability, K, decreases, and reduces
to the standard Navier-Stokes equations as the porosity € goes to 1 and the permeability
goes to infinity; consequently, this equation connects the two theories. These arguments
justify the fact that Equation (A-23) has been used with success in recent years to model the
flow of liquids in porous media (Beckermann and Viskanta 1988; Kladias and Prasad
1989; Nakayama et al. 1990; Sasaki et al. 1990).

In the next section, the governing equations for modeling the heat transfer in a partially

frozen porous medium are described.

A-2. MODELING OF HEAT TRANSFER IN A PARTIALLY-FROZEN
POROUS MEDIUM

While the modeling of flow in porous media involves only one phase, the liquid, modeling
of the heat transfer in a thawing or freezing wick structure is a priori more complex since
heat is conducted through the solid matrix and the frozen and liquid phases. Two different
numerical formulations have been developed to solve multidimensional convection/
diffusion solid-liquid phase—change problems, the temperature-based method and the
volume-averaged enthalpy method. In the temperature based method (Wolff and Viskanta
1988; and Bergman and Webb 1990), the temperature is the sole dependent variable and
the energy conservation equations are written separately for the liquid and frozen regions.
This formulation requires the specification of interfacial conditions on temperature, velocity
and heat transfer at the phase—change boundary. This renders the use of a fixed grid
difficult; instead deforming grids or transformed coordinate systems are required to
transform the time—dependent physical domain occupied by the melt into a time—
independent rectangular domain. While such front tracking formulation is accurate in
locating the phase—change boundary, computational complexities and excessive mesh
distortion usually preclude its use in cases involving a distorted solid-liquid interface (for

example due to natural convection in the liquid phase).

In the enthalpy formulation (Gray and O'Neill 1976; Cheng 1978; Voller and Prakash
1987; Beckermann and Viskanta 1988), the enthalpy is used as a dependent variable along
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with the temperature, and there is no need to satisfy explicitly interfacial conditions at the

phase—change boundary.
A-2.1. Volume-Averaged Homogeneous Enthalpy Formulation

The first step is to derive an enthalpy conservation equation for each phase (the porous
matrix, and liquid and frozen phases of the working fluid). Such equations can be
empirical in nature, or derived analytically from statistical theory (Scheidegger 1974) or
volume-averaging technique (Gray and O'Neill 1976; Whitaker 1977 and 1986; Cheng
1978; Levec and Carbonell 1985). These equations contain some unknown convective
and dispersive terms, which involve the deviations of the fluid velocity and temperatures
from their intrinsic averages, as well as surface integrals of temperatures and interphasic

exchange quantities over the separative interfaces between the three phases.

The interphasic exchange terms can be treated in two different approaches (Combarnous
and Bories 1975; Cheng 1978; Levec and Carbonell 1985). In the first approach, labeled
the continuous solid phase model, a distinction is made between the phases intrinsic
average temperatures, and effective heat transfer coefficients are introduced to model the
heat exchange terms between phases. However, it is difficult to represent interphase heat
fluxes in terms of film heat transfer coefficients when convective transport is small
compared to conduction. The second approach, known as the homogeneous model, forms
the evolution equation of the overall spatial average temperature by adding the energy
equations associated with each phase; in this process, the various interphasic exchange

terms simply cancel each others.

Considering that buoyancy-induced and surface-tension—driven liquid flows are
characterized by relatively low convective transport rates, one is encouraged to assume that
conductive transport is sufficient to eliminate significant temperature differences between
the separate phases (we are not considering the case of internal heat generation). In such
cases, the evolution equation can be expressed in terms of the overall spatial average
temperature only, with the assumption of local thermal equalibrium between phases
(Cheng 1978; and Whitaker 1986), stating that the intrinsic phase averages of temperatures
are equal.

For our purpose of modeling heat transfer in the porous region of the heat pipe, we choose

to use the homogeneous model derived from the volume—averaging of the microscopic
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enthalpy conservation equations, assuming local thermal and hydrodynamic equalibrium.
The advantages of this procedure are that the resulting evolution equation accounts for the
complicated interfacial structures of the various constituents and is valid for any volume
fractions of the wick porous matrix and the liquid and solid phases of the working fluid.
Hence, this approach offers the advantage that the entire domain can be treated as a single
region governed by only one conservation equation (Beckermann and Viskanta 1988). In
other words, the same equation can be used for the melt as for the fully solidified regions.
Also, as mentioned before, unlike empirical methods, a rigorous analytical averaging

process could offer additional insight into the assumptions involved.

The homogeneous enthalpy conservation equation for modeling the heat transfer within a
partly—frozen liquid-saturated porous medium is easily derived following the procedure
outlined by Cheng (1978). It is further assumed that the frozen fluid phase is not moving
and that the porous matrix of the medium is fixed, so that only the liquid velocity is non-
zero. The microscopic enthalpy conservation equations are integrated over the volume V
for each phase, and the unknown terms associated with each particular phase are modeled

by introducing dispersion thermal coefficients (conductivities).

Several investigators have tried to justify the form of the closure relationships for the
unknown terms. Levec and Carbonell (1985) have shown that the unknown terms could
be expressed in terms of known quantities through the introduction of various tortuosity,
dispersive, convective and heat exchange coefficients, resulting in a quite complex set of
equations. Whitaker (1986) has used order—of-magnitude analysis to derive the constraints
that must be satisfied in order that the dispersion-thermal—coefficient closure relationships
provide a reasonable description of the heat transport process in a packed-bed catalytic
reactor. His work has led to a series of constraints which unfortunately are based on
estimates only. It must be noted that the closure problem encountered is extremely complex
and quite similar to that arising in turbulence modeling, and experimentation seems to be
the only reasonable mean to validate the constitutive models. While Cheng (1978)
introduced scalar dispersion coefficients, Whitaker (1977, section II1.B) developed several
arguments which led to the modeling of all the unknown terms with a second-order
effective-thermal—conductivity tensor, that consists of a conductive part and a dispersive

part.

248



Using Whitaker's approach, the addition of the volume-averaged enthalpy conservation
equations associated with each phase leads to the following homogeneous enthalpy

conservation equation:

%[ev(ph)s+e<1—v>(ph)L+(1—e)(ph)m} + div|(ph) ]
ST 3.VP_ + div [feffVT] v 1o
dt €

. (A-24)

where the subscripts S, L and m refer to the frozen phase, liquid phase and solid matrix
respectively, € is the porosity (void fraction) of the porous matrix, and ¥ is the fraction of

the frozen fluid in the voids of the porous matrix; and

Pa ={Pa) » hy=(n,)", and q=(0,)=e0-(0,) =ea-m0 . (a25)

Equation (A-24) is derived assuming local thermal and hydrodynamic equalibrium between
the three phases, which can be written (Cheng 1978):
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. 4 ! - (A-26)
(1 {1 =1 - ).

The volume-averaged homogeneous enthalpy method offers several advantages: (a) it
employs a fixed-grid numerical scheme; (b) it accounts for the complicated interfacial
structures of the various constituents (Equation A-24) and is valid for any volume fractions
of the wick porous matrix and the liquid and frozen phases of the working fluid; and (c) it
does not necessitate implicit tracking of the liquid—solid interface. This method is also
preferred because of its simplicity, particularly since the change—of—phase is only one of
the processes involved in the physical operation of heat pipes.

A-2.2. Effective Thermal Conductivity Tensor

The effective—thermal—conductivity tensor is the sum of a stagnant conduction part and a
thermal dispersion part (Cheng 1978):
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where the stagnant tensor is diagonal when expressed in the appropriate orthogonal
curvilinear coordinate system, and the dispersion tensor possesses a priori nine non—zero
coefficients which depend on the Reynolds and Prandtl numbers. The experimental and/or
analytical determination of the components of this tensor represents a somewhat
unreasonable task, even for the case of transversely or fully isotropic porous media.
Because of these difficulties it is only recently that investigators have considered these
effects.

Kvernvold and Tyvand (1980) studied analytically the influence of hydrodynamic
dispersion on thermal convection in porous media, and have shown that a better agreement
between theoretical prediction and experimental data could be obtained if the thermal
dispersion effects were taken into account properly. Plumb (1983), Hong et al. (1987),
and Lai and Kulacki (1991) studied the effect of transverse thermal dispersion on both
forced and buoyancy—induced boundary layers along a heated vertical wall, for situations
where inertial effects are likely to be dominant. Since few data on thermal dispersion are
available in the literature, these authors approximated thermal dispersion by hydrodynamic
dispersion. They recognized that this representation is not suitable for a porous medium
that transports significantly larger amounts of energy compared to the fluid alone, such as a
highly permeable porous matrix whose thermal conductivity is higher than that of the fluid
(Kladias and Prasad 1989). Available experimental data suggested that the longitudinal
dispersion diffusivity is directly proportional to the Peclet number, while the transverse
dispersion diffusivity is on the order of 1/7 to 1/3 of the longitudinal value. Despite the fact
that such modeling of the dispersion coefficients is overly simplified, these investigators
have shown that thermal dispersion effects may become very important when flow inertia is

prevalent.

Georgiadis and Catton (1988a and 1988b) developed a stochastic phenomenological model
for fully—saturated isotropic packed beds. The interstitial fluid velocity was decomposed
into the sum of the mean ensemble—averaged velocity and a random fluctuating component,
as is done in the theory of turbulence. They assumed that thermal equalibrium prevails and
their closure procedure leads to the appearance of a (eddy) hydrodynamic contribution to
thermal conductivity that was also identified by Levec and Carbonell (1985). Georgiadis

and Catton then generalized their transport equation for unidirectional flows to the case of a
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general three-dimensional system, and obtained an expression for the second—order
dispersion tensor. They found that for steady convective heat transfer, the effective thermal
conductivity depends linearly on the local Peclet number based on the characteristic
dimension Dy, (mean size of the particles), the porosity and the thermal diffusivity of the
fluid. While the agreement with experimental data is encouraging, the authors pointed out
that dispersion effects cannot be neglected a priori even for natural convection in porous
media where the velocities are low. They conceded that measured thermophysical
properties for the fluid-solid mixture should be used when possible; this applies to the

values of porosity, permeability, stagnant thermal conductivity and dispersivity.

It is apparent, then, that the thermal dispersion coefficients are complex functions of flow
variables and physical structure of the porous medium in question, and the determination of
these coefficients is still a very challenging problem. Because we are only concerned with
very slow buoyancy-induced and surface-tension—driven liquid flows through the porous
wick of heat pipes, heat conduction is the only significant mode of heat transfer in this
region and we would expect the dispersion tensor to be negligible with respect to the
stagnant conductive tensor (Singh et al. 1973). For these practical reasons, we assume that
the thermal dispersion coefficients are equal to zero.

The following subsections deal with the properties of wire—screened wicks and isotropic
porous media. The properties of interest are volume porosity, permeability, effective pore
size and effective thermal conductivity of the wicks.

A-3. CONSERVATION OF MASS

The homogeneous continuity equation is derived in the same manner as described in
Section A-2.1 by following the procedure outlined by Cheng (1978), and reads:

0 ) -
é—t[eyps +e(1-7)p. +(1-e)p, | + div[p,4]=0 . (A-27)

Again, the addition of the volume-averaged mass conservation equations associated with
each phase eliminates the need to consider the mass transfer between the liquid and solid

fluid phases during the freeze-and—thaw process.
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The following sections of this appendix describe the hydrodynamic and thermal properties

of porous wicks, which are of common use in heat pipes.
A-4. HYDRODYNAMIC PROPERTIES OF WIRE-SCREENED WICKS

Wire screens are used extensively as the capillary structure in heat pipes because they are
commercially available in a wide variety of materials and meshes, and are easily
implemented. An important issue associated with modeling of heat pipes is determining the
properties of the wick, such as porosity, permeability and effective pore radius.

Figure A-la depicts a standard square—-mesh woven wire screen, of thickness = 2d . The
mesh number N is defined as the number of openings per unit length:

N=—= , (A-29)

1
L w+d

where d is the wire diameter, L is the mesh size and w is the width of the openings. In
practice, N is expressed in inch-! and ranges between 40 and 300 inch-!. Below 40 inch'!,
the wick is not capable of developing sufficient capillary effect, due to the large pores.

Above 300 inch!, the wick is not sufficiently rigid to be of practical use.

Because the woven screen is somewhat loosely wrapped, the effective thickness of one
layer, ¢, is larger than twice the wire diameter, by an effective interlayer clearance 7 :

t=2d+n=2d(1+p) . (A-30)
The equivalent normalized clearance (Ikeda 1988), B, is defined as 8 = 11/(2d), and ranges

typically between 10% and 75%. The three parameters, N, d, and B completely define the

geometry of a wire—screened wick.
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FIGURE A-1. Schematic of a Woven Wire Screen (Top and Front Views).
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A-4.1. Surface Porosity of Wire-Screened Wick

As shown in Figure A-1, the surface porosity of a wire—screened wick is given by:
2
2
d
g, =—=[1-=| =(1-w)* , (A-31)
L L

where w=d/L = Nd isthe wire diameter—to—mesh size ratio of the screen. The surface

porosity of the wick is plotted as a function of @ in Figure A-2.
A-4.2. Coefficient of Shrinkage

The coefficient of shrinkage, S, or crimping factor, accounts for the fact that the woven
wires are not straight; S is defined as the effective length of the wires per unit mesh size.
With the symbols R and 8 denoting the radius of curvature of the wire and the sector angle

respectively (see Figure A-1), S can be calculated as:

S= ? =2RON . (A-32)

Furthermore, R and € are related by the following trigonometric relations:

Rsin® = % , (A-33a)
Rcos® =R - -(21— . (A-33b)
Adding the squares of Equations (A-33a) and (A-33b) gives:
2 2
Rz(c0329+sin26):L—+ R? —Rd+d— ,
4 4
or
R_ et (A-34)
L 4 0]
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For computational efficiency, it is useful to calculate the tangent of the half-angle o =8/ 2.
The following trigonometric equations relate & and 9:

sin® =2cosasine

5 (A-35)
cosO@=2cos“a—-1 ,
so that tan o) can be written in terms of the cosine and sine of 8 as:
cosasin sin@
tan(o) = SBA0E (A-36)
cos” o 1+cosB

Substituting Equations (A-33a) and (A-33b) into Equation (A-36), and making use of
Equation (A-34) to eliminate the radius of curvature R gives finally:

tan(o) = tan(g) =@ . (A-37)

Using Equations (A-34) and (A-37) into Equation (A-32) allows to express the coefficient

of shrinkage, S, as a function of the wire diameter—to-mesh size ratio only:

S= (u) + i) Arctan(®) . (A-38)

As shown in Figure A-3, S ranges between 1 and 1.21. The geometrical limit o =1/+/3,
corresponds to the tightest possible configuration of the screen (for which R=d, and
0 =60°).

A-4.3. Volume Porosity of Wire-Screened Wick

The volume of a one-layer square~mesh screen with surface area (LxLy) is given by:

Vw:=(NLXNSLYAW)+(NLYKSLXAW)

(A-39)
= 2SNA,(L,L,)
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where Ay=mnd2/4, the cross—sectional area of the wire. If we neglect the degree of

intermeshing between adjacent layers, the volume porosity of the screen wick is:

Vy _,_SNmd® 1

n o
= =1-—— : A-4
(L Lyt 2 2d(1+B) s1ep (A-40)

Figure A-4 shows ¢ as a function of @ = Nd and the normalized clearance J of the wick.
The volume porosity of the wick increases with the clearance, and decreases with
increasing wire diameter—to—mesh size ratio. Note that the porosity of a wire—screened
wick is always greater than 0.452, unless the multi-layered screen is intermeshed. This
geometrical limit (@ = 1/+3,w/d=(3-1)/4) corresponds to the tightest possible
configuration of the screen (for which R=d , and 8 =60°, Figure A-1). Because of the
interweaving of the wire rods, the separation distance between two parallel rods must be at
least the diameter d of the woven transverse rod. If the degree of wrapping is uncertain
(that is the normalized clearance f§ is unknown), assuming 3= 0 for a tightly wrapped wick
is conservative, since it has higher flow resistance (lower permeability) than a loosely

wrapped wick.
A-4.4. Permeability of Wire-Screened Wick

Experimental data on tightly wrapped screen wicks for the wick permeability and inertia
coefficient have been correlated by the modified Blake—Kozeny equation (Ivanovskii et al.
1982, page 194):

B d2 83

- - C=
122 (1-¢)

207 1
—_— , A-41
V122 ee (A4D
where d is the wire diameter. It is apparent that the permeability K and inertia coefficient
C given by Equation (A-41) are identical in form to that given by the Erguns' Equation
(A-6) and the Kozeny—Carman Equation (A-9). If the degree of wrapping is uncertain,
using the formula for a tightly wrapped wick (Equation A-41) provides a conservative

approach since the tightly wrapped screens have higher flow resistance (lower
permeability) than their loosely wrapped counterparts.
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The normalized permeability of the wick with respect to the mesh size has the form:

K o 83

KN? == =—
12 122 (1-¢)

(A-42)

Since the coefficient of shrinkage S (given by Equation A-38) and the volume porosity £
(calculated from Equation A-40) are functions of the wire diameter—to-mesh size ratio @
and the normalized clearance 8 of the wick, the normalized permeability given by Equation
(A-42) is also a function of these two variables. Figure A-5 shows that the normalized
permeability of the wick increases with the clearance, and decreases with increasing wire

diameter—to—mesh size ratio; it has a minimum value of 8.5x10-4.
A-4.5. Verification of Wire-Screened Wick Model

Equations (A-40) and (A-42) were verified using measured characteristics of wire—screened
wicks found in the literature (Ikeda 1988; Dunn and Reay 1978; Chang 1990; Ferrell et
al. 1973). These data included mesh number, wire diameter, pore size, volume porosity
and permeability, and are collected in Table A-1. The last column of this table shows the
volume porosity and permeability calculated using the model described in this section,
Equations (A-40) and (A-42). The equivalent normalized clearance was chosen to match
the porosity (or the permeability) given in the reference. Results showed that these
equations can predict the porosity (within 5%) and permeability (within 25%) of wire—

screened wicks quite well, except for very coarse meshes (N < 60 inch-1).
A-4.6. Effective Pore Radius of a Wire-Screened Wick

The effective pore size of one layer of wire—screened wick is equal to one-half the screen
opening size (Figure A-1), and is a function of the wire diameter d and the mesh number
N:

w
Ry="=" . (A-43)

For multilayered screens, smaller pores could form in between the various layers,
depending on the degree of compression, distortion and intermeshing of the layers. The

dependence of the effective pore radius on the depth in the wick was experimentally
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TABLE A-1. Comparison of Calculated and Measured Porosity and Permeability for
various Square-Mesh Wire Screens.
screen wick parameters from reference calculated parameters
Reference || N d d/L R € K K¢ e Pt
(i) (um) =Nd¢ (um) (m?) (m2)
Dunn and Reay (1978)
Nickel 50| 50 203uc 0.40 152.u*| 0.625 6.63x10-10 7.74x10-10 0.65 0
Nickel 100 || 100 123uc¢ 0.484 65.5u*| — 1.52x10-100 1.65x10-19 0.60 10%
Nickel 200 || 200 47u¢ 0.37 40n | 0.689 6.2x10-11]| 6.7x10-11 0.69 5%
SS200]| 200  66uc 0.52 30.5u*| —  7.71x10°!11]| 7.8x10-!! 0.65 35%
Ferrell et al. (1973)
SS 40| 40 254uT 0.40 190.5u¢f 0.69 3.7x10-10f| 1.2x10° 065 0O
SS 100 100 123ut 0.484 65.5pc| 0.63 2.06x10-10| 2.3x10-10 0.63 20%
SS150f 150 70p 0.413 49.5puc| 0.68  8.0x10-'!'| 1.1x10°10 0.675 10%
SS200f 200 50.8u7 0.40 38.1pc| 0.69 5.4x10-!1| 6.8x10-!! 0.683 10%
Chang (1990)
SS 40| 40 254p 040 190.5u| 0.69 — 1.8x10?  0.69 12%
SS100ff 100 114y 0449 70u | 0.63 — 2.1x10°10 0.63 10%
Copper 100 100 114p 0.449 70u | 0.69 — 3.8x10-10 0.69 30%
SS150| 150 66u 0.39 52u | 0.68 — 1.2x10-10 0.68 8%
SS200f 200  53u 0417 37n | 0.69 — 8.2x10-11 0.69 20%
SS250Q 250 4Ip 0.40 30.5u |0.735 — 7.8x10°11 0.735 32%
SS 400f 400 25.4pu 040 19.0u | 0.706 — 2.0x10°11 0.70 15%
Noren Heat Pipe Co.
d=0.0028 in|| 100t 71.1p 0.28 9l4uc| — — 3.4x10°10 077 0
d=0.0024 in|f 150 61.0n 0.36 54.2uc| 0.70 — 1.1x10°10 0.70 2%
d=0.0020 in{j 2007 50.8u 0.40 38.1pc| — — 4.8x10-11 0.65 0
d=0.0016 inf 250 40.6u 0.40 30.5u¢| 0.65 — I’ 3.1x10°11 0.65 0

*: Reference 3.21 gives pore diameter, not pore radius.

T: Assumed by present author. ¢ Calculated by present author.
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verified by Roberts and Feldman (1972) for water heat pipes using two layers of stainless
steel and copper wire-screens. At higher than expected dryout heat transfer rates, these
investigators observed that the liquid level receded down to the second layer, at a depth of
about 59% of the wick thickness (measured from the wall), and stopped there. At this
depth, the LV interface encountered a pore size 20% smaller than that of a single layer,

and the wick could provide enough capillary suction to sustain the liquid level.

While the dependence of the effective pore radius on the depth in a multilayered wick has
been recognized experimentally, predicting analytically this dependence is a very difficult
problem. Therefore, it is assumed in this work that the capillary capability of the wick is
uniform within the wick and given by an effective pore radius of one-half the screen
opening size. In this case, the total wick thickness or distribution wick thickness is sum of
the thicknesses of the various layers. Figure A-6 shows the effective pore radius Ry, of the
screen wick as a function of the wire diameter d and the mesh number V. It is important to
note that for a given mesh number, the smallest pore size is obtained at the geometrical limit
(w=1/ v3, Rp /d= (\/5 —1)/2), which corresponds to the tightest screen configuration
possible. This geometrical limit is inherent to the interweaving of the wire rods. The
separation distance between two parallel rods is at least the diameter d of the woven
transverse rod (the limit arises for R = d, and 8 =60°; see Figure A-1)

A-4.7. Relationship Between Mesh Number and Wire Diameter

Figure A-6 shows that the pore radius R, is a strong function of the wire diameter d.
Therefore, it is not possible to estimate R, and the other properties of the screen wick
accurately if the wire diameter is not known, which is often the case. To remedy this
difficulty, values of the wire diameter were collected from Table A-1, which are of
common use by screen wicks manufacturers (Ikeda 1988; Dunn and Reay 1978; Chang
1990; Ferrell et al. 1973). Using this information, the wire diameter was correlated as a
function of mesh number as:

12,637.  84,867.

d= -8.65 + 2

: (A-44)

where d is expressed in micrometers (um) and N is in inch-1. The manufacturing values
of the wire diameter that were selected for the least—square regression are collected in Table

A-2, and are compared with the values given by Equation (A-44).
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FIGURE A-6. Effective Pore Radius of the Screen Wick as a Function of Wire

Diameter and Mesh Number.

When the wire diameter of the screen wick is not known, it is recommended to use the
value predicted by the empirical relation, Equation (A-44). In such case, the effective pore
radius of the wick is a function of d only, and this function is represented in Figure A-6 by

the curve labeled "manufacturing practice”.

TABLE A-2. Comparison of Common Manufacturing Values of the Wire Diameter
with Correlation Equation (A-44), as a Function of Mesh Number.

Mesh # N (inch-1) 40 50 100 150 200 250 400

d (um), Table A-1 254 210 114 66 50.8 40.6 254
d (um), Equ. A-44 || 2542 210.1 109.2 71.8 52.4 40.5 22.4

262



A-5. EFFECTIVE THERMAL CONDUCTIVITY OF POROUS WICK

A great deal of work has been done on the determination of the effective thermal
conductivity of porous media saturated with liquid. The stagnant effective thermal
conductivity of porous media, k., depends on the structure of the porous medium as well
as the thermal conductivities and volume fractions of the constituents. In this section,
several analytical models and experimental data for the effective thermal conductivity of

wire—-screen meshes, packed beds of spheres and homogeneous wicks are reviewed.
A-5.1. Theoretical Models of Effective Thermal Conductivity

Chi (1976) has reviewed various analytical models for evaluating the effective thermal
conductivity of common heat pipe wick structures, such as wire screens, packed-bed of
spheres, cubic array of truncated spheres and rectangular grooves. The parallel and series
theoretical models define the upper and lower limits for the effective thermal conductivity
kefr (Combarnous and Bories 1975). The parallel model is valid for a porous medium
structured like a set of alternate strata of fluid and solid parallel to the main heat flux:

Kegr =€kg +(1-€)ky, (A-45)

where ¢ is the volume fraction of liquid, kyis the thermal conductivity of the fluid (in the
solid or liquid phase), and k,, is the thermal conductivity of the wick solid matrix. The

lower limit of the effective thermal conductivity is given by the series model:

=—+— . (A-46)

In 1891, Maxwell obtained an expression for the effective conductivity of randomly packed
and sized cylinders (Singh et al. 1973) as:

keff — (km+kf)+(1_£)(km—kf) v
ki (km+kg)-(1-€)(ky—k¢) w—(1-8)

(A-47)

where
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Xtk (A-48)
l(m - kf

In 1892, Rayleigh developed a series solution for the thermal conductivity of a square array

of identical cylinders using potential theory (Chang 1990):

Kegr -1 = 2(1—8) (A-49)
Ky 0.036(1—8)4 0.0134(1—3)8
—\|;+(1—e)+ +
y y

Because the absolute value of y is always greater than or equal to 1, the terms of order
(1-€)* and higher can be neglected in Equation (A-49). In this case, Rayleigh's equation

reduces to Maxwell's Equation (A-47). Indeed, it is found that Equations (A-47) and the
truncated series (A-49) give identical results for volume porosities £ greater than 0.25.

Ikeda (1988) derived a new correlation for the effective thermal conductivity of a plain
woven screen wick, in which the wire diameter, mesh number, coefficient of shrinkage and
inter—layer clearance were included as variables. Ikeda matched his correlation to
experimental data for wire screens to obtain the volume porosity and the normalized
clearance f of the wicks (these two quantities are related by Equation A-40).
Unfortunately, the values of the inter—layer clearance he obtained by this method were
much larger than that calculated from the measured thicknesses of the screens. Ikeda's

work was therefore non—conclusive.

Chang (1990) developed a simple theoretical model for the effective thermal conductivity of
fluid—saturated wire screens in terms of wire diameter, mesh number, total thickness of
wick and number of layers, and compared his model with existing correlations and
experimental data available in the literature. Chang found that all the models tend to deviate
from the measured values as the conductivity ratio &,/ k; increases above 1. For a
conductivity ratio ranging between 24 (liquid water and stainless—steel screen) and 623
(liquid water and copper screen), Maxwell's Equation (A-47) for a random arrangement of
distributed cylinders was accurate within 25% (air data excluded). Chang's correlation
gave slightly better results in some cases, but did not exhibit any significant improvement

over Maxwell's, as it was only 20% accurate for copper screens saturated with liquid
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water. Furthermore, Chang's equation included a free geometric parameter that is difficult
to estimate.

Maxwell also derived an expression for a continuous liquid phase containing randomly
dispersed and randomly-sized solid spheres (Chi 1976) as:

Ky ___(km+2kf)+2(l—8)(km_kf) _ @ +2(1-¢) ‘

(A-50)
kg (km+2kf)_(l_€)(km_kf) ¢—(1-¢)
where
_ kp 2k (A-51)
ko — k¢

However, because Maxwell did not take into account the interaction between the spherical
inclusions, his solution is admissible only when the conductivity ratio ky, / k¢ is much less
than 1 or for porous media with large volume porosity. In order that the action of the
spheres may not produce effects depending on their interference, their radii must be small
compared with their distances, therefore, the wick volume porosity must be large. When
the thermal conductivity of the solid inclusions is greater than that of the liquid, Equation
(A-50) underpredicts the effective thermal conductivity of the wick, as demonstrated by
experimental data for the magnetic permeability of ferromagnetic inclusions dispersed in a

nonmagnetic material (Veinberg 1967).
By taking account the interaction of the inclusions, Veinberg (1967) derived the following

transcendental equation valid for any concentration of spherical solid inclusions and any

matrix—to—fluid thermal conductivity ratio:

1/3
e(M] = Kmzker (A-52)
k¢ Km — kg

Following a similar procedure, Veinberg (1967) also obtained the effective thermal

conductivity of an isotropic aggregate of randomly oriented ellipsoidal inclusions.

Prasad et al. (1989) measured the stagnant thermal conductivity of several liquid—saturated

porous beds of spheres and evaluated the accuracy of the parallel model and other

265



correlations available in the literature. These authors observed that these correlations
(except the parallel model Equation A-45) were quite capable of predicting reasonable
values for ko as long as ky, > k¢, however, none of the correlations investigated by
Prasad and coworkers were suitable when the solid thermal conductivity was significantly
lower than the fluid thermal conductivity. Also, the agreement was generally not good for
a gas—-filled porous medium. Based on their experimental data, Prasad et al. (1989)

recommended the use of Krupiczka's model for liquid-saturated beds of granular solids.

Krupiczka (1967) solved analytically the two—dimensional Laplace equation for two simple
geometries: a stack of parallel cylinders of volume porosity 0.215, and a simple cubic array
of spheres of porosity 0.476. Then he extrapolated his results to intermediate volume
porosities using experimental data available in the literature, and obtained the following

correlation:
k kY
Zeff —|2m | where
k¢ k¢
n=0.280 - 0.757Log;, (€) —- 0.057 Log;, (l;—r:j . (A-53)

A-5.2. Comparison of Theoretical Models with Experimental Data

Krupiczka (1967) collected experimental data for beds of granular solids in liquid water,
oil, aqueous solutions of glycerol and ethyl alcohol, and various gases. The matrix—to—
fluid conductivity ratio k,, /k; ranged between 1 and 1650. Krupiczka's correlation
deviated by as much as 70% for gas—filled beds, but performed reasonably well (within
25%) for liquid—saturated packed beds. However, because of the methodology used,
Equation (A-53) is only valid for volume porosities £ ranging between 0.2 and 0.5.

For the liquid and frozen phases of liquid metals (sodium, potassium and lithium) and
structural materials compatible with these fluids (stainless steel, nickel, niobium,
molibdenum, tungsten and zirconium), the matrix—to—fluid conductivity ratio ranges
between 0.1 and 3.5. For these combinations of fluids and materials, Equations
(A-45)—(A-47), (A-50) and (A-52) reduce approximately to the thermal conductivity of the
liquid phase, and are suitable (Figures A-7 and A-8). This is because liquid—metals have

high thermal conductivity, similar to that of the structural materials which are compatible
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FIGURE A-7. Effective Thermal Conductivity of Wicks for a Conductivity Ratio
ky, / ks =0.1 as a Function of Volume Porosity.
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with these fluids. The situation, however, is very different for non-liquid metal working
fluids, when the fluid thermal conductivity is significantly lower than that of the matrix.
For example, liquid water has a poor thermal conductivity (0.63 W / m.K) compared to that
of the metallic wick matrix, usually copper (392 W / m.K), or stainless—steel
(154 W/ m.K).

The models presented above for the effective thermal conductivity of porous wicks are
compared with experimental data available in the literature. Chang (1990) and Ikeda (1988)
reported experimental data for the transverse thermal conductivity of wire—screened wicks,
and Krupiczka (1967) collected experimental data for beds of granular solids in liquid
water, oil, aqueous solutions of glycerol and ethyl alcohol, and various gases; the matrix—
to—fluid conductivity ratio &y, / kf ranged between 1 and 1650. Veinberg (1967) reported
experimental data for the magnetic permeability of ferromagnetic inclusions dispersed in a
nonmagnetic material. Singh et al. (1973) and Ferrell et al. (1973) also studied
experimentally the effective thermal conductivity (parallel to the felting plane) of water—

saturated stainless—steel sintered fiber wicks, sintered powders and screen meshes.

Results for wicks with matrix—to—fluid conductivity ratio of 0.1, 4, 24 (water—stainless
steel), 75 and 623 (water—copper) are shown in Figures A-7 to A-11, respectively. As
shown in Figures A-11 and A-9, the effective thermal conductivity of copper and stainless—
steel wicks saturated with liquid water is a strong function of wick porosity, and various
models give very different values. The parallel and series theoretical models define the

extreme range in which the real value of the wick effective conductivity ke is found.

Figures A-7 to A-11 show that Maxwell's Equation (A-50) and Veinberg's model for
randomly distributed spheres give identical results for large volume porosity. For
porosities less than 0.8, Maxwell's model underpredicts the effective thermal conductivity
of the wick. Veinberg's Equation (A-52) is valid for any concentration of spherical solid
inclusions as Veinberg took into account the interaction of the inclusions in the derivation
of his correlation. Also, Maxwell's Equation (A-50) and Veinberg's Equation (A-52) give
almost identical results for wicks with conductivity ratio kn / ks less than 1 (Figure A-7),
as the heat conducted through the connected inclusions of solid plays a less important role

in this case.

268

¢ -



FIGURE A-9.

CONDUCTIVITY RATIO k., /k,

FIGURE A-10.

CONDUCTIVITY RATIO k., /k,

1001

Effective Thermal Conductivity of Wicks for a Conductivity Ratio
kn / k¢ =24 (Water—Stainless Steel) as a Function of Porosity.

100

101

PARALLEL (Equ. A—48)_
VEINBERG (Equ. A—52)
SPHERES (Equ. A=50) .
CYLINDERS (Equ. A-47)
: SERIES (Equ. A—48) _
A Ferrail ot al, (1973)
creezieenionenene o7 Singh ot ol (1973)
1 D Valnberg (1967)
i IR ikeda (1988)

.................... Chang (1990)
............ A\Y.,

AN

0.l4 0.[6 0.18 1
VOLUME POROSITY of WICK &

PARALLEL. (Equ. A—45) _
VEINBERG (Equ. A-52) _

KRUPICZKA (Equ. A~53)
SPHERES (Equ. A=50)_
CYLINDERS (Equ. A-47)
SERIES (Equ. A-46) __
Kruplezko (1967)
Veinberg (1967)

‘E

4\

Effective Thermal Conductivity of Wicks for a Conductivity Ratio

0.2 O.I4 0.|6 0.'8 1
VOLUME POROSITY of WICK &

k7 ks =75 as aFunction of Volume Porosity.

269



1000 PARALLEL (Equ. A-45)_

VEINBERG (Equ. A-52)
KRUPICZKA (Equ. A=53)
SPHERES (Equ. A~50) _
CYLINDERS (Equ. A—47)
SERIES (Equ. A—46) _
A Ferrell ot al. (1973)
&' T7 Singh et ol. (1973)
)9 Kruplczko (1967)

; Chang (1990)

100 4%

CONDUCTIVITY RATIO k_,,/k,
o

1

k,/k =623 _
0 0.I2 0.I4 O.IG 0.l8 1
VOLUME POROSITY of WICK &

bl

FIGURE A-11.  Effective Thermal Conductivity of Wicks for a Conductivity Ratio
ky, / k¢ =623 (Water—Copper) as a Function of Volume Porosity.

As shown in Figures A-7 to A-11, Maxwell's Equation (A-47) for distributed cylinders
gives consistently lower effective thermal conductivities than his model for distributed
spheres (Equation A-50). Figures A-10 and A-11 show that Krupiczka's model (Equation
A-53) gives results very similar to that obtained from Veinberg's model (Equation A-52)
for beds of spherical granulars. This agreement validates the use of Veinberg's correlation

for porous beds of spheres.

For a conductivity ratio ranging between 24 (liquid water and stainless—steel screen) and
623 (liquid water and copper screen), Maxwell's Equation (A-47) is the most accurate for
calculating the effective radial thermal conductivity of wire—screened wicks. The model of
Veinberg compares very well with experimental data for ferromagnetic inclusions dispersed
in a nonmagnetic material and for beds of spherical particles. Therefore, Equation (A-52)
is best for calculating the effective thermal conductivity of isotropic porous media such as

ceramic powders and packed beds of spheres.

Finally, the effective axial thermal conductivity of water—saturated stainless—steel sintered

fiber wicks, sintered powders and screen meshes is well predicted by the parallel model,
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Equation (A-45). As shown in Figure A-9 and A-11, the effective axial conductivity of
screen meshes saturated with water is at least four times the effective radial conductivity. It
is therefore important to evaluate these two conductivities independently in HPTAM in
order to accurately predict the effect of axial conduction in heat pipes using low—
temperature working fluids, such as water. For liquid-metal heat pipes with wire—screened
wicks however, Equations (A-45) and (A-52) for axial and radial conductivities give very
similar results (Figures A-7 and A-8), suggesting that, unlike in water heat pipes,

components of the wick effective conductivity are almost equal in liquid—-metal heat pipes.

Based on the results of this section, Maxwell's Equation (A-47) for distributed cylinders is
chosen to calculate the effective radial thermal conductivity of wire—screened wicks in
HPTAM, while the parallel model, Equation (A-45), is selected for calculating the axial
thermal conductivity of such wicks. The model of Veinberg (Equation A-52) for
distributed spheres is preferred for calculating the effective thermal conductivity of 1sotropic

porous media such as ceramic powder, metallic felt or sintered metal.
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APPENDIX B. FREE-MOLECULE AND TRANSITION FLOWS
REGIMES

During the startup of fully-thawed, high—temperature heat pipes (utilizing liquid—-metal

working fluids), free—-molecule and transition flow regimes arise in the vapor region.

Section (B-1) reviews some fundamentals of the kinetic theory of gases. Sections (B-2) to
(B-6) describe the methodology used to estimate the effective molecular diameter of heat
pipe working fluids. This information is necessary for evaluating the mean free path of the

vapor molecules.

B-1. MEAN FREE PATH AND KINETIC THEORY

Assuming that molecules are effectively small hard spheres of diameter 6, Maxwell derived

the following expression for the average distance traveled by molecules between collisions:

1

A=———
\2me’n

(B-1)

where n is the number of molecules per unit volume (Dushman and Lafferty 1962, p. 28;
Cunningham and Williams 1980, p. 70; note the mistake of using the word "radius" for
"diameter” in the text). n is related to the vapor—phase density by n = N,.p,/M , where

M is the molecular weight.

To draw the flow charts for the various heat pipe working fluids of interest, namely,
lithium, sodium, potassium and water, it is necessary to estimate the effective molecular
diameter ¢ of these fluids in order to calculate the mean free path of the vapor molecules.

B-2. EVALUATION OF THE MOLECULAR DIAMETER OF SPHERICAL
NON-POLAR MOLECULES

There are three methods reviewed for determining the molecular diameter ¢ of spherical
non—polar molecules (they do not apply for water), namely, the transport coefficient
method, the van der Waals method, and the close—packed solid—phase density method,

which are described in the following sections.
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B-2.1. Transport Coefficient Method (Dynamic Viscosity)

From kinetic theory (Cunningham and Williams 1980, chapter 2), the dynamic viscosity of

a gas can be calculated as:

Ky = %mnvak , (B-2)

where the mean average molecular velocity v, is given as:

|8KT
vV, = ;r; (B'3)

(note in Dushman and Lafferty 1962, chapter 1, the mistake of using the factor 1/3 instead
of 1/2 in Equation (B-2), due initially to a calculation error of Maxwell! See Cunningham
and Williams 1980, pp. 255-256, for more details). Combining Equations (B-2) and (B-

3) gives the following expression for the viscosity of the gas in terms of the temperature
and the gas molecular mass m and molecular diameter o:

T /8kT
wy = lmptmm - 1 /mkT . (B-4)
2 g2 VT

V21o2n

A more sophisticated approach leads to the following expression of py for a pure gas
composed of rigid, elastic and nonattracting spherical molecules of diameter o and mass m
(Dushman and Lafferty 1962, p. 28):

Ly = 5 mkT ) (B-5)

1602 T

It is well-known, however, that two molecules attract each other when they are far apart
and repel each other when they come close together. These intermolecular forces are
commonly described by a potential energy function characterized by the two parameters &
and € (& 1s the maximum energy of attraction between a pair of molecules). For spherical
non—polar molecules, the Lennard-Jones potential applies, leading to a modification of
equation (B-5) as (Monchick and Mason 1961, p. 1678):
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Ly, = 5 YmkT

B-6
16V1t6? Q+(T*) (5-0)
Substituting M = mN, , and evaluating 7, k and N, , we find:
e = —5_ (L)”z IMT - 84415« 1025 IMT (B-7)
16V N. G20 G20+

If o in expressed in Angstrgm (A) and M in gr/mol, Equation (B-7) reads as (Hirschfelder
et al. 1954, p. 528):
-3 1/2 — —
Ly = 8.4415x 10 [10°) — YML - 266.94x 10° YML
(10°)° &°x o Q

(B-8)

€2* is a dimensionless corrector factor function of the dimensionless temperature T*=kT/e.

The function Q* can be expressed in terms of T* as (Hirschfelder et al. 1954, p. 1126):

Qx(T*) = 0.73122 + 0.95922 _ 0.1022 , for 03<T*<50 (B-9)
T* T*

Equation (B-8) has been verified experimentally for various non—polar gases (Hirschfelder
et al. 1954, pp. 560-563). The Principle of Corresponding States (Hirschfelder et al.
1954, pp. 244-247) leads to T¢* = 1.3, which is in good agreement with experimental
data for Ne, Ar, Xe, N2, Oz and CH4 (Hirschfelder et al. 1954, p. 303). Hence, T* may

be calculated as:

T*=13 1L . (B-10)
T

Using experimental data for the dynamic viscosity of the vapor phase [y, it is then a simple

exercise to determine the molecular diameter ¢ through the use of Equations (B-8)—-(B-10).
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B-2.2. Van der Waals Method

From Dushman and Lafferty (1962), p. 37, the molecular diameter is given directly in
terms of the molar volume by as:

63=7929x 10025 x bg , (B-11)
where
b = Rele (B-12)
8P,

B-2.3. Close-Packed Solid-Phase Density (metallic fluids)

Knowing the structure and the density of the close~packed solid—phase of the working
fluid, it is possible to calculate the lattice parameters and deduce the molecular diameter &
(molecules are modeled as hard-spheres, and close-packed means the nearest neighboring
molecules are touching each other in the structure). In this section, a refers to the cubic
lattice parameter (the side of the reference cube) and b is the distance between centers of
the nearest neighboring molecules in the structure, which is equal to & in the case of a

close~packed structure.

B-2.3.1. Close-Packed Simple Cubic Lattice (6 nearest neighbors):

a=b=0.
One molecule occupies a volume of 63, so that;
ps = m/c3, and:

s =(m_)_% . (B-13)

B-2.3.2. Close—-Packed Body-Centered Cubic Lattice:

b2=3(@)2=3a2=62, sothat a=

2 G. (B-14)

2
V3

BN
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The body—centered molecule has 8 nearest neighbors and a volume a3 contains
148x(1/8) = 2 molecules, so that the density is pg =2m/a3, and:

o=41% (pm)l . (B-15)

B-2.3.3. Close-Packed Face-Centered Cubic Lattice:

b=2%=¢, and a=120.
12

A corner-molecule has 12 nearest neighbors and a cube of side a centered on it
contains 1+12x(1/4) = 4 molecules , so that the density is pg = 4m/a3, and:

o =2"m) . (B-16)
Ps
TABLE B-1. Some Properties of Heat Pipe Working Fluids (Vargaftik 1975,

Reynolds 1979, and Schlunder 1984).

N
working fluid | M (gr/mol) | Tmelt (K) (kg/sm3) Tc (K) Pc (MPa)
lithium 6.94 453.7 534.0 | 3,200+ 600 | 70.0 £ 14.0
potassium 39.10 336.4 862.0 |2225+ 25 164+ 03
sodium 22.99 371.0 9712 [ 2510+ 20| 31.0+ 6.0
water 18.016 273.15 916.8 647.3 22.1£0.03

*. densities at room-temperature (except for ice), from Weast 1986; and ASM Metals 1981.
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B-3. EVALUATION OF THE MOLECULAR DIAMETER OF LITHIUM
B-3.1. Transport Coefficient Method (Dynamic Viscosity)

We found that the most appropriate vapor—phase viscosity correlation is that of Vargaftik
(1975) for monoatomic vapor, with a molecular diameter o = 3.0 A (we used Tc = 3,800

K as recommended by Reynolds 1979). The kinetic theory agrees with experimental
values to within = 8% in the temperature range 1,000 K<T<2,000K.

B-3.2. Van der Waals Method

Using the critical values listed in Table B-1, we find 294 A<o0<382A .
B-3.3. Close-Packed Solid-Phase Density
Solid lithium has a body—centered cubic type of structure above 80 K and undergoes a
spontaneous transition to a close—packed hexagonal structure at 80 K. Using the literature

value of a=3.5092 A (Pearson 1958; and Jeppson et al. 1978), we find:

c=12@a=3.039A

Substituting the room-temperature density of solid lithium (Table B-1) in Equation (B-15),
we find 6 =3.038 A, which is almost identical.

Finally, compilation of these results leads to the following selection:
o(Li)=3.0+0.1A, resulting in an uncertainty in the mean free path A of
1+ 6.3%.
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B-4. EVALUATION OF THE MOLECULAR DIAMETER OF POTASSIUM
B-4.1. Transport Coefficient Method (Dynamic Viscosity)
We found that the best vapor—phase viscosity fits are that of Vargaftik (1975) for saturated

vapor with a molecular diameter ¢ = 3.93 A, and that used in SNPSAM (Seo 1988) and
HTPIPE (Woloshun et al. 1989) models with ¢ =4.26 A.

B-4.2. Van der Waals Method

Using the critical values listed in Table B-1, we find 4.77 A <o <4.87 A

B-4.3. Close-Packed Solid-Phase Density

Solid potassium has a body—centered cubic type of structure which is maintained without
transformation down to 0 K (Pearson 1958). Using the room—temperature density of solid
potassium (Table B-1) in Equation (B-15), we find ¢ = 4.608 A, which is the value listed

in Table B-2 for room-temperature.

Finally, compilation of these results leads to the following selection:
o(K)=4.44+0.18 A , resulting in an uncertainty in the mean free path A of

+ 8.6%.
TABLE B-2. Lattice Parameters of Solid Potassium at Various Temperatures.
T 5K 78 K 293 K ||
a (A) ¥ 5.225 5.247 5.321
oA # 4.525 4.544 4.608

*: lattice parameters a compiled from Pearson (1958).

#: molecular diameter calculated with Equ. B-14, assuming close—packed structure.
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B-5. EVALUATION OF THE MOLECULAR DIAMETER OF SODIUM
B-5.1. Transport Coefficient Method (Dynamic Viscosity)
We found that the best vapor—phase viscosity fits are that of Vargaftik (1975) for saturated
vapor with a molecular diameter ¢ =2.83 A, and that used in SNPSAM (Seo 1988) and
HTPIPE (Woloshun et al. 1989) models with =345 A .
B-5.2. Van der Waals Method

Using the critical values listed in Table B-1, we find 3.81 A<o<437A
B-5.3. Close-Packed Solid—Phase Density
Solid sodium has a body—centered cubic type of structure, and undergoes a spontaneous

partial martensitic transformation to a close—packed hexagonal structure on cooling below

36 K (Pearson 1958). Using the room—temperature density of solid sodium (Table B-1) in
Equation (B-15), we find 6 =3.710 A , which is close enough to the values listed in Table
B-3.

Finally, compilation of these results leads to the following selection:
o(Na)=3.58 £ 0.13 A, resulting in an uncertainty in the mean free path A of

+7.7%.
TABLE B-3. Lattice Parameters of Solid Sodium at Various Temperatures.
—— ———— e ]
T 5K 78 K 87K 293 K
a (A) ¥ 4.225 4.238 4.249 4.291
c(A)# 3.659 3.670 3.680 3.716

*: lattice parameter a compiled from Pearson (1958).

#. molecular diameter calculated with Equ. B-14, assuming close-packed structure.
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B-6. EVALUATION OF THE MOLECULAR DIAMETER OF WATER

The viscosity formula for non—polar gases (Equation B-6), based on the Lennard-Jones
potential, cannot be applied with confidence to gases consisting of polar or highly
elongated molecules, because of the highly angle-dependent force fields that exist between
such molecules (H,O, NH3, CH30OH, NOCI,...). For polar molecules, the most widely
used intermolecular energy potential is the Stockmayer potential, sum of the Lennard—Jones
function and an additional angle—dependent term to account for the electrostatic interaction
of the two dipoles (Hirschfelder et al. 1954, @1.3). The second and third virial
coefficients for water have been computed for this potential function by Rowlinson
(6 =2.65 A, e/k = 380 K, Hirschfelder et al. 1954, p. 214; also Eisenberg and
Kauzmann 1969, p. 51).

Rowlinson also used a potential function similar to Stockmayer's but with the repulsive
energy proportional to r-12 and with an additional term describing dipole—quadripole forces
(Hirschfelder et al. 1954, pp. 225-227; also Eisenberg and Kauzmann 1969, p. 52). For
water vapor, he found ¢ = 2.725 A, e/k = 356 K . Although the agreement between
calculated and experimental second virial coefficients was not improved, the derived
parameters are certainly more reliable when the dipole—quadripole interaction is included.
In particular the value of ¢ determined from the modified potential function is much closer
to the intermolecular distance in ice: the separation of hydrogen—bonded molecules in
ordinary ice is 2.76 A, and the distance between nearest neighboring molecules in ice

polymorphs may vary from 2.74 A to 2.87 A (Eisenberg and Kauzmann 1969, p. 48, 85).

For very high energy collisions, where the repulsive forces are more important than the
attractive forces, it is a fairly good approximation to replace the angle-dependent
contribution in the Stockmayer potential by an expression for the interaction of two—point

dipoles that are perfectly aligned. For water vapor, Krieger (Hirschfelder et al. 1954, pp.
597-599) found o =2.824 A, e/k =2309K .

Some other models have also been proposed for calculating the viscosity (and other
transport coefficients) of polar gases. The Sutherland model (Hirschfelder et al. 1954, pp.
565-567) is not appropriate for water vapor. Monchick and Mason (1961) have calculated
the collision integrals for the Stockmayer potential for polar gases and have compared their
model with viscosity experimental data. For water vapor, they found the potential

parameters values listed in Table B-4, using different methods.
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Finally, by using the critical values listed in Table B-1 for water, the van der Waals method
gives 0 =2.89 A.

By compiling all these results we obtain 2.52 A < 6(H20) < 2.89 A. However, we expect
the molecular diameter of water to be greater than 2.74 A, which is the smallest distance

between neighboring molecules in ice, and we choose:
o(H20) = 2.8 +0.1 A, resulting in an uncertainty in the mean free path A of

+ 7.5%.

TABLE B-4. Energy Potential Parameters for Water Vapor as Determined by
Monchick and Mason (1961) from Various Fitting Methods.

II METHOD o (A) ek (K)
graphical method 2.52 775.
least square (rec.) 2.71 506.
non—polar gas 2.65 800.
free fit 2.80 260.
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APPENDIX C. AN OVERVIEW OF NUMERICAL TECHNIQUES

This appendix reviews several efficient and advanced numerical techniques, and discuss
their performance, respective merits and drawbacks. Section C-1 reviews several
discretization schemes for the convection and diffusion fluxes. Sections C-2 and C-3
discuss the merits of finite~element and finite—difference methods and describe the non—
staggered and staggered grid arrangements. Section C-4 shows the equivalence of under-
relaxation and transient formulations, and demonstrates that the time—dependent
formulation is always preferable. Section C-5 describes the very popular SIMPLE,
SIMPLER and SIMPLEC finite-difference iterative solution techniques, in which the
velocity components and pressure are calculated in a sequential or segregated manner. The
residual norm reduction technique described in Section C-6 provides an optimum pressure
under—relaxation factor for the convergence of the SIMPLE-type strategies. The effective
parabolic block correction technique is described in section C-7. This procedure was
developed to solve two—dimensional incompressible pafabolic flow problems very
efficiently by a marching technique in the flow direction, and can be extended to the
solution of two—dimensional steady compressible flows. In contrast with the pressure—
velocity coupling, the temperature~velocity coupling which arises in natural convection and
temperature—driven incompressible flow problems has received little attention. Galpin and
Raithby developed the Coupled—Equation Line—Solver iterative technique for the solution
of such incompressible buoyancy—driven flow problems (section C-8). Sections C-9 and
C-10 describe the very efficient line-by-line iterative technique, additive block—correction
(ACM) method and additive—correction multigrid procedure for the solution of five-point
linear systems which arise from the discretization of conservation equations on a two—
dimensional domain. The advantages of ACM over the Brandt-type multigrid algorithms
are reviewed in section C-11. The last section (C-12) reviews the non—iterative splitting
methods, such as the Alternating Direction Implicit (ADI) approximations to solve multi—
dimensional flow problems, the Marker—And—Cell formulation (MAC) and other projection
algorithms to resolve the pressure—velocity coupling of the Navier—Stokes equations, and
the non—iterative PISO procedure (Pressure-Implicit with Splitting of Operators) of Issa.
These non-iterative splitting procedures have been considered to speed up calculations and

reduce the complexity of programmation as well as storage requirements.
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C-1. DIFFUSION/CONVECTION DISCRETIZATION SCHEMES

As is well known, the numerical solution of convection—diffusion problems is rendered
difficult because of a numerical instability that occurs when the convective transport
dominates the transport by diffusion. The difficulty manifests itself by producing
unrealistic oscillatory or "wiggly" solutions whenever the mesh size exceeds a critical value
(Ramadhyani and Patankar 1985). Although mesh refinement might overcome the
problem, very often the resulting increase in computational cost is excessive. This
difficulty has been recognized and overcome by practitioners of finite—difference and finite—
element techniques through the use of upwind and hybrid schemes, some of which have
the attractive feature of being unconditionally stable. Success in overcoming the stability
problem has been achieved, however, at the expense of accuracy. Most upwind and hybrid
schemes suffer from severe false (numerical) diffusion when the flow direction is at an
angle to the grid lines (Patankar 1980). False diffusion tends to augment the transport in
the direction normal to the local streamline, and can cause quite erroneous inferences to be
drawn, particularly when transport models (such as models of turbulence) themselves are

being studied.

The well-known power-law differentiating scheme (PLDS) of Patankar and Spalding
(Patankar 1980) is based on the exact solution of one-dimensional steady diffusion—
convection problems with constant properties, and performs well in flow regions in which
the velocity field aligns closely with the mesh lines, when convection is primarily balanced
by streamwise diffusion rather than cross—stream diffusion or sources. That is, the power—
law scheme does not respond correctly to lateral diffusion. The Quadratic Upstream-—
Weighted Interpolation scheme (QUICK) of Leonard (1979) is third—order accurate in
space and establishes implicitly the coupling between the flow components, even so it
superposes one—dimensional approximations. Huang, Launder and Leschziner (1985)
have shown that for a two—dimensional irrotational corner flow, both the power—law
scheme and QUICK give a very accurate flow field, primarily because of the special nature
of this flow in which the velocity components are coupled through the pressure but not
through convection. However PLDS does not insure formal conservation of the stagnation
pressure. The study of these authors leaves no doubt that PLDS should not be used unless
the mesh can be closely aligned with the flow path lines, like in the case of a boundary
layer flow. QUICK emerges as one of the most successful schemes for incompressible
steady flows. It is a scheme attractively simple to incorporate into a solution algorithm and,

for the typical mesh densities employed, requires only some 65% more computing time
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than PLDS. Because the QUICK scheme results in an unusual nine—point matrix, a
modified line-by-line technique with alternating sweep directions, which treats implicitly
the four closest neighbors only, must be used to overcome convergence difficulties
(Huang, Launder and Leschziner 1985). The investigation of several authors shows that
high—order schemes such as QUICK significantly reduce false numerical diffusion but can
produce wiggles and often fail to converge. In particular Tao and Sparrow (1987) showed
that QUICK is stable only for grid Peclet numbers less than 8/3. For all these reasons, and
considering the particular flow geometry of interest, that in a heat pipe, it is appropriate and
preferable to use the power-law differencing scheme of Patankar to discretize the
convection—diffusion fluxes.

C-2. STAGGERED GRID ARRANGEMENTS

In incompressible flow problems, there is no explicit equation that governs the pressure
distribution. It is indirectly specified via the continuity equation. When the correct
pressure field is substituted into the momentum equations, the resulting velocity field also
satisfies the continuity equation (Patankar 1980). One way to handle this indirect
specification of pressure is to attempt a direct simultaneous solution of the whole set of
discretized momentum and continuity equations. In practical problems, however, this
technique would require a very large amount of computer storage and time, even when
specialized sparse matrix solvers are employed. Another possibility is elimination of the
pressure from the overall formulation, but these methods cannot be easily extended to
compressible and unsteady flow situations, and are not well suited for problems in which
boundary conditions are prescribed on the pressure. It is therefore desirable to use iterative
solution techniques in which the velocity components and pressure are calculated in a

sequential or segregated manner (Baliga and Patankar 1983).

Although the continuity constraint is used to determine the pressure, only gradients of
pressure appear in the momentum equations (and the pressure does not appear explicitly in
the continuity equation). Because of this, if the pressure is interpolated using linear shape
functions, only pressure differences between alternate grid points are involved in the
overall system of equations (Prakash and Patankar 1985). Hence the equations reveal no
difference between a uniform and a “checkerboard” pressure fields. Such a spurious
pressure distribution is unacceptable, and is prevented in finite difference methods by using

a staggered grid arrangement.
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On a staggered grid, the momentum and continuity equations are discretized by using two
different families of control volumes. Mass fluxes across the faces of the momentum
control volumes are extrapolated in order to insure that mass is strictly conserved over these
volumes. For these reasons, the method entails specification and calculation of a relatively

extensive amount of geometrical and topological information.
C-3. NON-STAGGERED GRIDS AND FINITE-ELEMENTS

In a finite—difference discretization method, a “checkerboard” pressure field can develop as
an acceptable solution if the velocity components and the pressure are located at the same
grid positions (Patankar 1980). Since such pressure fields are undesirable, one uses a
staggered grid, which completely eliminates the “checkerboard” pressure field. In the
staggered grid, the velocity components are stored at displaced or staggered locations such
that the pressure drop between two pressure nodes can be used to “drive” the velocity
component located between them. Methods such as SIMPLE and its variants all use the
staggered grid arrangement. Although the staggered grid eliminates this major difficulty, it
introduces some inconvenience which becomes more serious when the method is extended
to curvilinear non-orthogonal coordinates. Similarly, since there is no direct counterpart of
the staggered grid in the finite—element method, one has to resort to unequal-order
interpolation, which reduces the accuracy of the overall solution (Patankar 1988). These
reasons provide the motivation for the search for methods with non-staggered grid or

equal—-order interpolation.

Although the non—staggered grid methods appear satisfactory on the surface, a number of
them suffer from a subtle drawback: the solution produced by them depends on the values
of the under—relaxation factors or the size of the time step. This feature is obviously very
undesirable. That the non-staggered grid methods have this characteristic has been
recognized by Patankar and other authors for quite some time. Recently, Majumdar (1988)
has described this phenomena and proposed a remedy for it. Incidentally, the same

drawback is present in some of the finite—element methods with equal—order interpolation.

The finite—element method provides close approximation of curved boundaries, a
systematic and general way of modeling boundary conditions, and a versatile algorithm
(Banaszek 1989). For these reasons, the finite-element method has become a more and
more popular numerical tool in field theory problems, despite its greater programming
complexity compared to the finite—difference methods.
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By contrast, finite—difference methods are simple to formulate, can easily be extended to
two or three dimensions, and require considerably less computational work and storage
requirement than finite—element methods (for equivalent number of nodes). For these
reasons, it is preferable to discretize the flow conservation equations using the finite—
difference method, based on the control-volume integration. The control-volume approach
has the following advantages: (a) it is simple to implement and amenable to easy physical
interpretation; (b) the solution obtained by this approach satisfies global conservation, even

on a non—uniform grid.

C-4. EQUIVALENCE OF UNDER-RELAXATION AND TRANSIENT
FORMULATIONS

As is well known when dealing with steady—state problems, the resulting discretization
equations can be solved directly by some relaxation algorithm such as a point or line
Gauss—Seidel solver, or the steady—state solution can be obtained as asymptotic values of
an associated unsteady problem. Moreover, by using the unsteady formulation, it is
possible to solve both the steady and transient problems with the same code. When it is
chosen to solve the steady-state equations directly, heavy under-relaxation is usually
necessary to resolve the non-linearities and couplings, and it can be shown that relaxing the
steady—state equations is equivalent to the transient formulation. To illustrate this point,

consider the discretized form of the two-dimensional transient axial momentum equation:

V.. -Vl
(pVol) P Y aF (vi+llj - ViJ) +aW? (Vi-IJ‘ 'ViJ)

At
Z Z _Z
+aN (ViJ+1 'ViJ) +aS (viJ~l 'viJ) =5,
which can be rewritten as:
4 VA z _Nz
a}yviJ +aBE v, +aW’ Vi-1J+aNZvi.j+l +aS'v;, =S, (C-1a)

where
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z Z
aP? = M-(aEZ+aWZ+aNZ+aSZ), and §Z=Sz+w—0]) Vir:j . (C-1b)
At At

Introducing the coefficient aP* and the factor E (van Doormaal and Raithby 1984) defined
by:

* z z z )s 0 d - aP* = At .
aP (aE* + aW? + aN? +aS?) >0, and E (pVol)? At At , (C-2)

Equation (C-1) is equivalent to:

(1 + é) aP" vij + aE? vi,1j + aWZ v; | j + aN? Vijel +aS?vij =S5+ % vij - (C-3)

By contrast, the steady-state discretized equation has the following form:

aP” vij + akE? Vizrj + aWw? Viegg t+ aN? Vij+l + aS? Vij-1 = Sz, (C-4)

To resolve the non-linearities and the couplings between the flow equations, Equation
(C-4) must be under-relaxed. Introducing the relaxation factor a, the relaxed version of

Equation (C-4) has the form (Patankar 1980):

Vij = V?’j + O 1 (SZ - aE* Vitl,j - aWw? Vi1, - aN? Vij+l - aS? Vi,j-l) -V

aP* M (C-5)
or:
ag vij+ aEf vy + aW? Vi.1j + aN*vj .1 + aS? Vij-1 =S*+ IETOL aP* v'l‘J . (C-6)

Clearly, Equations (C-3) and (C-6) are identical if the relaxation factor o is taken to be
a. = E/(E+1). Note that the characteristic time step At* corresponding to E=1 is the
maximum stability limit for the explicit discretization version of Equation (C-1). We wish
to use values of E in excess of 1 for fast calculation of transient and asymptotic solutions,
and this is only possible with implicit discretization schemes such as Equation (C-1). Itis
also apparent that the E-formulation is preferable than the o—formulation since ¢ is a non—
linear compressed function of the time step At while E is proportional to At. However, it is

better to use the unsteady formulation (C-1) because the use of the same time step At in all
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conservation equations gives a consistent scheme, while the use of the same E factor does
not, since At* is different for different transported variables.

In conclusion, it is recommended that the time—dependent approach be adopted in all cases,
even if only the steady—state solution is of interest. The solution can be advanced in time
by using both explicit and implicit discretizations. Explicit schemes are easily programmed
but have a severe stability restriction on the time step (At < At*), which may compromise
their efficiency. Such a restriction can be (partially) removed by use of an implicit

approach such as an ADI factorization, at the expense of an increase in complexity.
C-5. SIMPLE-TYPE PROCEDURES

The papers most relevant to the present subject are those of Harlow and Welch (1965),
Harlow and Amsden (1971), and Chorin (1968). These authors all use finite—difference
procedures in which the dependent variables are the velocity components and the pressure.
The latter is deduced from a Poisson equation which is obtained by the combination of the
continuity equation and momentum equations, and the idea is present of a first
approximation to the solution, followed by a succeeding correction. The iterative nature of
the SIMPLE-type procedures for incompressible flows arises from the following reasons:
(a) the equations are non-linear; (b) the continuity and momentum equations are coupled
by the pressure; and (c) a direct solution of the finite—difference equations, even when they

are linear, is time consuming (Patankar and Spalding 1972).

In the formulation for fluid flow, only the procedure for incompressible flows is described
here. The method has been extended to compressible flows, but those details do not
necessarily mean flows with constant density; the density can be a function of temperature
and concentration. The term incompressibility refers to the effect of pressure on density.
Since the calculation procedure described does not directly account for the pressure—density
coupling, it is considered to be applicable only to flows at low Mach numbers (Patankar, in
Minkowycz et al. 1988, p. 216).

The momentum conservation equations for two—dimensional incompressible flows can be

discretized by successive—substitution linearization of the convective terms:

aPr uj; + aE’ Ujplj + aWr’ Uj.1j + aN’f Uj 41 + aS‘ui,j_l =Cr (Pi,j‘ Pi+1,j) + 8T , (C-7a)
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aP? Vij+ aE? Vielj + aWw? Vi + aN? Vij+l + aS? Vij-1 = Cc? (Pi,j- Pi,j+1) + S% | (C-7b)

(Ar)ij - (A) i1y +(Av)ij - (Av)ija =0 | (C-7¢)

The resulting momentum and continuity linear equations involve the velocity components
u,v and the pressure field P as the dependent variables (as a rule, all omitted subscripts
should be read as i,j ). The pressure-velocity elliptical coupling can be resolved by the
SIMPLE-type pressure correction techniques (Raithby and Schneider 1979), originally
derived by Patankar and Spalding, which proceed as follows. Starting with a guessed
stared pressure field, the momentum conservation Equations (C-7a) and (C-7b) are solved
for the stared velocity components:

* L

* r.* r.* r.* — (T r
aPf u,"j + aE ui+l,j + aW ui-l,j + aN ui,j+l + aSTu. (Pi,j- Pi+],j) +S R (C_Sa)

ij-1—

* %

aP? V‘;’j + aEZ V’;+1,j + aWZ v!;'l,j + aNZ V?,j+1 + aSZ V’;,j-l = CZ (Pi,j- Pi,j“’l) + SZ . (C-Sb)
Because this new velocity field does not satisfy the continuity equation (C-7c¢), these

velocities and the pressure field must be corrected:

u=u'+u, v=v*+v, and P=P+P . (C-9)

The momentum correction equations relate the velocity and pressure corrections and are
obtained by subtracting Equations (C-8a) and (C-8b) from Equations (C-7a) and (C-7b)
respectively:

aPrf ui’j + aEruH]J + aWr ui-],j + aNT’ ui,j,’_l + aSr u]"j_l = Cr(Pi’j' Pi+l,j) s (C_lOa)
z, zy zy AN zy. . —cCz[p y
aP Vi,j + aE vi+l,j +aW Vi~l,j + aN Vi,j+1 + aS Vi,j-l =C (Pi,j_ Pi,j+1) R (C_lOb)

After suitable simplifications of the momentum correction equations, a pressure correction
equation is derived as follows: the momentum equations are used to express the velocity
components in terms of the pressure correction field, and the velocities appearing in the
continuity Equation (C-7¢) are eliminated. This procedure leads to the construction of an
elliptical Poisson equation that is solved for the pressure correction field. This pressure

correction field is used to correct the velocity field, but is not used usually to correct the
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pressure field, so that a separate equation is used to evaluate the pressure field. The
pressure correction step corrects the velocity field to yield a new velocity field which
satisfies exactly the mass conservation constraint, while the pressure field is corrected so as
to satisfy the momentum conservation equations in an average, "most—consistent” way. At
this point a distinction must be made between passive and active pressure update methods.
In the passive PULS algorithm (Pressure Update from Least-Square residual
minimization), the corrected velocity field is inserted into the momentum conservation
equations and the pressure at a particular location is chosen so that a linear combination of
the squares of the four momentum residuals surrounding this particular location is
minimum. The weighting factors must depend on the cell dimensions as recommended by
Briley (1974). Raithby and Schneider (1979) have shown that such a passive pressure
update procedure still achieves convergence for large time steps. The advantage of this
method is that the coefficients of the pressure update matrix are dependent on the grid
dimensions only and need to be calculated only once. It is then possible to perform a
matrix inversion once for the entire problem, so that the pressure update steps will be very
inexpensive in CPU time. This is all the more important that the iterative solution of the
Poisson equation requires many more iterations to reach a given accuracy than do the

momentum equations, and can take up to 80% of the total computing time in some cases.

In the active pressure update SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) and SIMPLEC (SIMPLE—-Consistent) algorithms , the same pressure correction
field is used to update both the velocity field and the pressure field. SIMPLE neglects the
off-diagonal velocity corrections in Equations (C-10), while SIMPLEC approximates these
corrections by u'j;j in Equation (C-10a) and by v'jj in Equation (C-10b). The resulting

approximate correction momentum equations take the form:

(Aw)y =D(Fi5Piyy)

(C-11)
(Av)i =DZ(Pi,j' Pi,j+l) ,
with
_ALC _ACE
D= arPf and D*= ﬁ (C-11a)

for SIMPLE, and
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Dr —_ ArCr and DZ - AZCZ
aP"+aE+aW'+aN'+aS’ aPZ+aFZ+aWZ+aNZ+aS? (C-11b)

for SIMPLEC. Making use of Equations (C-9) and (C-11) in the continuity Equation
(C-7c) gives the following pressure correction equation:

aP P,;+aEP,  +aWP,_  +aNP,, +aSP, , =SP | C-12
1,j i+1,j 1 i+ J ( )

where

aPij =D+ Dy ;+ Djj + D4,
j

aEi‘j =- DrlJ s aWi,j =- D}-],j s aNi,j =- ij > aSi,j =- Dzi,j-l s

and S, =-[(Aw) ;- (A) iy +(AvY) 5 - (Av) i) (C-13)

Because of the inconsistency in the simplifications of the momentum correction equations
made by SIMPLE, this algorithm requires that the preséure is under-relaxed. The
SIMPLEC algorithm of van Doormaal and Raithby (1984) uses a consistent simplification
of the momentum correction equations and does not require any pressure under—relaxation.
The SIMPLER (SIMPLE-Revised) algorithm of Patankar (1980) operates slightly
differently. A stared velocity field is assumed and the off—diagonal correction velocities are
neglected in the momentum equations, as in SIMPLE, so that Equations (C-7) are
rewritten:

* * * *
aPr Ui’j + aEr ui+]‘j + aWr ui_l’j + aNr ui’j+1 + aSr ui‘j‘] = Cr(Pi'j‘ Pi.,.]'j) + Sr s (C_]4a)

aP?v;; + aE? V);”,j + aW? v’:_l,j + aN?* v?,jﬂ + aS” v’;‘,j_, =C*(Pij- Pija1) + 8% (C-14b)

These momentum equations are used to express the velocity components in terms of the
pressure field, and the velocities appearing in the continuity equation are eliminated. The
resulting elliptical Poisson equation is solved for the pressure field. At this point a pressure
correction field is computed using the SIMPLE procedure and the stared velocities are
corrected as before. However, the pressure is not corrected and the pressure field
computed in the first step is taken as the new pressure field. Note that in SIMPLER the
Poisson equation for the new pressure field is identical to the pressure correction equation
except for the source term, which is different. One of the advantages of SIMPLER is that

291



if the guessed stared velocity field happened to be the correct one, the pressure equation
would yield the correct pressure field. SIMPLER internally generates a pressure field that
is compatible with the velocity field, and this procedure has a much better rate of
convergence than SIMPLE, even so the computational work per iteration is increased by
about 60%. Van Doormaal and Raithby (1984) pointed out that when diffusion and
convection phenomena are dominated by pressure gradients and source terms, the
consistent approximation in SIMPLEC becomes exact so that this procedure should be
used. This applies to flow systems with large pressure gradients such as flows in porous
media and heat exchangers. Also SIMPLEC is easy to program and performs as well or
better than SIMPLER in terms of CPU time and storage requirements. Note that SIMPLE—
type algorithms are appropriate when pressure—velocity couplings are predominant. For
buoyancy-induced flows or strong temperature effects, efficient treatment of the pressure—

velocity coupling becomes of less consequence.
C-6. RESIDUAL NORM REDUCTION TECHNIQUE

When using the SIMPLE-type pressure update procedures, the velocity field must usually
be under—relaxed to resolve the non—linearities in the momentum equations, while the
pressure correction is also under—relaxed when inconsistent approximations are made such
as in SIMPLE. Chatwani and Turan (1991) have proposed an improvement of SIMPLE~-
type strategies by selecting the pressure correction under-relaxation factor based on the
minimization of global residual form. After solving the pressure correction equation for P’
and after the velocity field has been corrected according to the procedure, the new pressure
field is under—relaxed as P= P*+ oP', and the momentum residuals are formed as:

Rf=S8"- [aP’ Ui + aEf Uisl,j + aWr Ui-1,j + aNf Ui j+1 + anui'j_l]

- Cr[(P?.j + aP‘i,j) - (P;u + aP’iH,j)] =R" OLC[(P'i.j - Pi+1,j) (C-15a)

R% = §% - [aPZ Vijt+ aE* Vitlj + aw? Vi-lj t aNZ Vij+l + aS? Vi,j-l]

-C [(PTJ + aP’i.j) - (Pr,jn + aP‘i,jH)] =R" aCZ(P'i,j - Pli,j+l) . (C-15b)
The global residual norm (assuming equal weight for all node points) is:

G=2, (R?+R}) ,
ij

292



and can be minimized with respect to the relaxation factor o by setting the derivative of G

to zero:

6 _,y) (- m,,)[RaC’ PPag)] |
dor 2% +c(B,-P.,.) [R oci(P .J+1)]

so that the optimum relaxation factor o is given by:
z { C'R i,' P, j) + CZRZ(Pi,j - .m)}

{ [Cr(P 1+1 J)] [CZ(P” ’J+1ﬂ i }

i

(C-16)

Therefore, no empirical information is needed for the pressure relaxation factor, as the code
will automatically select the optimum value at each iteration level. Even for those cases
where no improvement in the convergence is obtained, the proposed method takes the
guesswork out of trying to specify o. It is believed that performance of the method can be
improved by reevaluating the momentum equation coefficients with the updated (corrected)
velocities before applying the minimization criterion. Note that the present residual norm
reduction technique is different from the PULS algorithm (Raithby and Schneider 1979)
which formulates a Poisson equation for the pressure on the basis of minimization of local
residuals and thus can encounter convergence difficulties. The present algorithm is based
on improvements in the pressure correction algorithm in a global sense and faces no
convergence difficulties.

Note that this residual norm reduction technique recommended by Patankar (1986) is easily
extended to all dependent variables. The solution procedure of the linearized equations
predicts a change (or correction) in the dependent variables. Instead of accepting this
change as it is, it is multiplied by a constant o, a kind of under— or over—relaxation factor.
The value of this factor is found by requiring that the norm of the residual vector (i.e., the
sum of the squares of the residuals of all the equations) be a minimum. This minimization

search produces a kind of "optimum" relaxation of the dependent variables.
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C-7. EFFECTIVE PARABOLIC BLOCK CORRECTION PROCEDURE

Braaten and Patankar (1989) have proposed an effective Parabolic Block Correction (PBC)
procedure to accelerate the convergence of the solution of two—dimensional incompressible
flow. This procedure makes use of the fact that incompressible parabolic flow problems
can be solved in a very efficient manner by a marching technique in the flow direction,
technique which requires little computer storage and CPU time, as described by Raithby
and Schneider (1979). A flow is parabolic in the axial direction z if axial diffusion is
negligible and the radial pressure gradient is small compared with the axial pressure drop.
This situation arises usually when an incompressible fluid is flowing in a tube with no
recirculation. The PBC technique proceeds as follows. Consider the axial momentum

conservation Equation (C-7b), which is reproduced here for convenience:

aP?* Vijt+ aE* Vitelj + aW? Vi1, t aN? Vij+1 + aS* Vij-1 = Ct (Pi,j' Pi,j+l) + 8% . (C-7b)

The procedure consists in correcting the axial velocity components and the pressures by
marching in the flow direction, say by increasing j, so that vj;j.| is known from the
previous line correction step. In the spirit of the parabolic approximation, the flow is not
influenced by the downstream neighbor, so that v j;1 is evaluated explicitly from the
previous iteration; also the pressure variation in the cross—stream direction is neglected
compared to the streamwise pressure changes, and corrections of pressures APj are
uniform along the line j+1. With these approximations, Equation (C-7b) reduces to:

aw? Vi-1, + aP? Vijj + aE? Vislj = C? [P’:,_]' (P’ik,j+l + APJ)] + S% - aN? V*;.j+1 - a8? V):,j_] )
or
aW?v; | + aP?v; + aE*v;,; =- C*AP +S%, (C-17)
where the stared quantities refer to the best available estimates, and subscripts j are dropped
since unnecessary. Because of the linear form of Equation (C-17), it is easy to verify that

the solution of this system can be written: Vi =V; + APf; , where ¥; and f; are solutions

of the system:

aWZ¥i) + aP*¥; + aE? V) =S (C-18a)

aWw? fi-l + aP? fi + aE? fi+1 =-C% . (C-18b)
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Equations (C-18) are easily solved using the efficient TDMA tridiagonal matrix solver of
Thomas. It is more efficient to combine the solution of Equations (C-18a) and (C-18b)
since one set of the TDMA recursive coefficients is not dependent on the source term and is
therefore identical for both systems. Finally, AP is calculated by requiring that mass is
globally conserved over the cells of line j. Summation of the mass balance equations over

the line j gives an equation of the following form:

. Nr Nr Nr
m=3 PAsZVi=(Z PA?fa)AP+ D ALY | (C-19)

i:l l=1

which gives AP in terms of the most recent updates of the velocity field, ¥, and f;. After
the correction procedure has been applied to every line of constant j in increasing order, it
can be repeated in the radial direction. While the use of PBC is slightly more expensive
than one double sweep of the line-by-line iterative technique, this procedure alone is
capable of solving the entire problem if the flow is of boundary-layer type, and can
significantly improve the rate of convergence of the solution algorithm in the case of an
almost parabolic flow, such as in a heat pipe where radial pressure gradients and axial
diffusion phenomena are small or negligible.

Connell and Stow (1986) have extended the pressure—update procedure to the solution of
two-dimensional steady compressible flows. The first step of a typical iteration consists of
solving the continuity and momentum equations for the pressure and velocity fields by
using an Extended Pressure Correction procedure (EPC). The energy equation is then
solved for the temperatures, and densities are updated as a function of pressures and
temperatures by using the equation of state. Connell and Stow have tested various EPC
procedures and have retained EPC-2A as their most stable and efficient algorithm, which
requires about 20 to 40% less CPU time than SIMPLE. The procedure consists of
performing one or two internal iterations of SIMPLE type, whose purpose is to explicitly
account for the off-diagonal velocity corrections in the momentum correction equation.
The first internal iteration proceeds exactly as SIMPLE: the off-diagonal velocity
corrections are neglected in the momentum correction equation, the pressure correction
equation is formed and solved, and the corresponding off-diagonal velocity corrections are
computed. Their new value is used explicitly in the momentum correction Equations
(C-10) and the process is repeated. While EPC-2A does not require any under—relaxation
of the velocity field, the pressure field must be relaxed. It is apparent that the use of the
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consistent velocity correction approximation of Van Doormaal and Raithby (1984) should
strongly improve the efficiency of the algorithm and remove the need for pressure under—
relaxation. The new procedure is obtained by simply using SIMPLEC instead of SIMPLE
for the internal iterations of the extended pressure correction procedure. Connell and Stow
pointed out that because the discrete equations are coupled and non-linear, there is little
point in solving them exactly during each iteration. Only the Poisson equation for the
pressure corrections must be solved within a certain accuracy for the procedure to converge

correctly.

C-8. THE CELS SOLVER FOR TREATING THE TEMPERATURE-
VELOCITY COUPLING

In contrast with the pressure—velocity coupling, the temperature—velocity coupling which
arises in natural convection and temperature—driven incompressible flow problems has
received little attention. Note that incompressible flows does not necessarily mean flows
with constant density; the density can be a function of temperature and concentration. The
term incompressibility refers to the effect of pressure on density. Since the calculation
procedure described does not directly account for the pressure—density coupling, it is
considered to be applicable only to flows at low Mach numbers (Patankar, in Minkowycz
1988, pp. 216). Galpin and Raithby (1986) identified two different forms of the
temperature—velocity coupling for buoyancy—driven flows: (a) the temperature appears
implicitly in the momentum equations through the Boussinesq approximation; (b) the
velocity components appear in the energy equation through the advective energy transport
terms. In forced—convection flows, coupling (a) is negligible, that is the velocity field does
not depend on the temperature and can be computed separately, while the temperature field
is strongly dependent on the velocity profiles through coupling (b). In pure natural
convection (temperature—driven convection) flow, coupling (a) is particularly strong, and
coupling (b) can be significant also. For very slow flows such as in a porous medium,
coupling (b) is negligible, that is the temperature field is independent of the flow field and

can be computed separately.

Because the conservation equations are non-linear, they must be linearized in the first
place, and two different practices have been extensively used. In the successive
substitution linearization, the unknown coefficients are simply evaluated from the currently
available values of the dependent variables, as it is done in SIMPLE-type algorithms. This

standard linearization decouples the momentum and energy equations, which is convenient
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for the solution of the system, but usually requires heavy under-relaxation to avoid
divergence since it does not accurately mimic the physics of the flow. In the Newton—
Raphson (NR) linearization technique, the anticipated change in the coefficients is taken
into account via their first derivative with respect to the dependent variables (uT = uT +
uT? - u"T"). This more accurate NR linearization practice has a significantly higher rate of
convergence, at the expense of an increased computational effort due to the coupling of the
momentum and energy equations. When the current estimates of the solution are close to
the exact solution, the NR technique is very efficient. But for initial guesses that are far
from the solution, this linearization technique often fails to converge, as observed by
Patankar (1986). The same author has devised a very satisfactory technique, called the
hybrid linearization method, which employs the standard linearization until the norm of the
residuals decreases below a certain value, and then switches to the NR linearization until
the final convergence of the solution. By combining this hybrid linearization method with a
direct solution solver (sparse-matrix LU decomposition) and a residual norm reduction
technique (after each iteration, the optimum under—relaxation factor is computed by
minimizing the norm of the residuals), Patankar (1986) was able to obtain a converged
solution in only 25 iterations for a flow with a Rayleigh number of 107 when a zero initial
guess was used for all variables. For the first time, the same author obtained solutions for
Rayleigh numbers as high as 10 (with a Prandtl number of 0.71) when solutions for a
lower Rayleigh number were used as the initial guess. Iterative methods such as
SIMPLER failed to converge even after 1000 iterations.

Galpin and Raithby (1986) have applied the NR linearization technique to the momentum
and energy conservation equations for incompressible buoyancy—driven flows and

obtained:

aP’ ujj+ aE’ Uitpj + aWw’ Uj.p; + aNrf Uj i+l + aS’ U j-1
=C'(Pij- Pixrj) +S"+aPTT;+aET Ty , (C-20a)

aP? Vij+ aE? Viglj + aW? Viilj t+ aN? Vij+l + as? Vij-1
=C*(Pij- Pijy1) +S*+aPTT;j+aN"T Ty, , (C-20b)

aPT Ti,j +aET Ti+l,j +awT Ti-l,j +aNT Ti,j+1 +aST Tj'j_]
=ST 4+ 4T uj; + aWTr Ui+ aNTz Vij+ aSTz Vij-1 s (C-20c¢)

(Art)ij - (A i1y + (Azv)ij - (Agv)ija =S . (C-20d)

1
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Galpin and Raithby have compared the standard (ST) and Newton-Raphson (NR)
linearization techniques by solving the system of Equations (C-20) exactly at each step (by
using a direct solver), to isolate the effects of the temperature-velocity coupling. They
have considered the natural convection flow in a polar annulus for three different fluids: air
(Pr = 0.71), glycerin (Pr = 13,000) and Mercury (Pr = 0.025). These authors have
observed like Patankar that the NR linearization technique works only when the general
sense of the flow is established (good "initial” solution) since it assumes that extrapolation
from the previous solution is reasonable over the prescribed time step. For Pr>1, ST-
direct converges only for small time steps, while NR~direct converges faster for a wider
range of time steps. For fluids with low Prandtl number, the temperature profile is
established mainly by conduction, so that the advective coupling (b) is weak and standard
linearization is suitable to solve the system of Equations (C-20). For flows of moderate or
high Prandtl numbers and high Rayleigh numbers, a bidirectional sensitivity (couplings (a)
and (b)) is retained, and proper treatment of the temperature—velocity coupling via the
Newton—Raphson linearization is important. Galpin and Raithby (1986) have extended the
Coupled-Equation Line-Solver (CELS) iterative method to the solution of the coupled
system of Equations (C-20). This algorithm solves simultaneously for u, v, P and T along
lines of control volumes, iteratively improving the solution by sweeping line by line across
the entire domain in alternating directions, very much as does the line-GS solver or ADI
technique for a scalar variable. Careful attention is paid in the formulation to ensure that
mass is rigidly conserved, so that iterations are required only to improve the satisfaction of
the linear momentum and energy conservation equations. The j-row updating of the CELS
technique proceeds as follows. By retaining implicitly only the dependent variables with a
subscript j (the variables with subscripts j-1 or j+1 are evaluated explicitly and
incorporated into the source terms), the system of Equations (C-20) reduces to:

aP’ uj; + aEr Uiy + aWr Ui ;= Cr (Pi,j' Pi+1,j) + ‘§r + apT Ti,j +aET Ti+1,j » (C-21a)

aP? Vij + aE? Vitl,j + aW? Vil j = Cz Pi,j + §Z + aPZT Ti,j , (C—21b)
aPT Ty + aET Tiyyj+ aWT Tp ;= S" + aET ugj + aWTruyp j + aNT2 v, (C-21¢)
(A) ;- (A) i1y +(Av)i5=S . (C-21d)

Equation (C-21d) can be used to express the v components of the velocity field in terms of
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the u components, and the v components are eliminated in Equation (C-21b) to give an

equation for the pressure in terms of the u components and the temperature:

C*P;= agFr Uiyl + apPr Ui + aWPr Ui+ aWWwFr Uiz + SP. apzT Ti; . (C-22)

Equation (C-22) is used to eliminate the pressures in Equation (C-21a), which gives a
linear equation pentadiagonal in u and bidiagonal in T. Finally, the v component of the
velocity is eliminated in Equation (C-21c) by using Equation (C-21d), which results in a
linear equation tridiagonal in T and bidiagonal in u. These two linear equations can be
efficiently solved by the coupled pentadiagonal u, tridiagonal T matrix PT-TDMA
algorithm (Galpin and Raithby 1986). After calculation of T and u, Equation (C-22) is
used to evaluate the pressure P while v is obtained from Equation (C-21d). The CELS
algorithm is performed successively on rows of increasing j, and the last line j=Nz
requires a special treatment: (a) the v components of the velocity field are calculated from
the boundary conditions; (b) the u components of the velocity field are calculated using the
mass balance over each control volume (Equation C-21d); (c) the last interior v—
momentum Equation (C-21b) is used to evaluate the pressure; (d) finally the temperatures
are computed from the solution of the tridiagonal Equation (C-21c). Note that by sweeping
along lines of constant j in increasing order (from j=1 to Nz), mass conservation is
enforced exactly after each sweep, even if the velocity and pressure fields have not
converged yet. Because CELS decouples the pressure between the lines j, the convergence
of the solver is slowed. To remedy this problem, a block correction of pressure is
performed after each sweep, by correcting the pressure levels of each line Jj by &Pj (Galpin,
van Doormaal and Raithby 1985). The constraint that determines 8P; is that the v~

momentum Equations (9b) are satisfied on the average along the line j :

Nr
z [aPZ Vij + aE? vy j + aW?vi | j + aN? Vij+1 +aS*vij - S%- ap?T Ty, - aNzT Ti,j+1]
i=1

Nr Nr Nr
= 2 CZ(Pi,j+ oP; - Pi,j+l) = Z C* (P - Pij1) + SPjZ c*
i=1

i=1 i=1

(C-23)

Then all pressures on line j are corrected, starting from line Nz-1 to line 1, in decreasing
order. Galpin and Raithby (1986) found that for large time steps, NR—-CELS performed
better than a line Gauss—Seidel solver combined with SIMPLEC or SIMPLER, the latter

being very sensitive to the size of the time step. In contrast, the computational time
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required by NR-CELS to reach the steady—state flow solution is a smooth and decreasing

function of the time step.
C-9. THE LINE-BY-LINE ITERATIVE TECHNIQUE

The five—point finite—difference equations can be solved by repetitive use of TDMA in the
first and second coordinate directions (TDMA double—sweep or line Gauss—Seidel
method). The advantage of this solver is that it gives nearly the exact solution after only
one double-sweep when the coefficients in one direction are much smaller (or greater) than
the coefficients in the other direction (Patankar and Spalding 1972). This situation arises
for strongly anisotropic problems, of for isotropic problems which must be discretized on
grids of very large aspect ratios. The double—sweep can be repeated a few times to obtain

greater accuracy.

Because the solution of the pressure correction elliptical equation can represent as much as
80% of the total computational cost, it is a high priority to solve the Poisson equation in an
efficient manner. The line-by-line iterative technique of Patankar has the combined
advantages of simplicity and low-storage requirement. The rate of convergence of this
technique depends crucially on the treatment of the off-line dependent variables, and van
Doormaal and Raithby (1984) have proposed a modification of the line-by-line technique

to accelerate its performance.
C-10. ADDITIVE BLOCK-CORRECTION METHOD

Settari and Aziz (1973) have proposed a single partitioning method of acceleration of
convergence for stratified or heterogeneous problems. This Additive Block—Correction
(ABC) can be applied after a certain number of iterations of any iterative method used to
solve the following linear system of equations:

R=S-[A]T=0, (C-24)

where [A] is a NxN matrix, S is the source term vector of dimension N and T is the
dependent variable vector. Now we consider a complete partition of Iy = {1,2,....N}
constituted of M blocks I, (p=1 to M) with M < N; we associate one unknown correction
Op with each partition or block, and we define the correction vector & such that d; = Op
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for i€ Ip. If we denote by T the current approximation of the solution of Equation (C-24)

and require that the average residual on every block or partition is zero, we obtain:

2{ T+6 S}—O for p=1to M.
ielp (C-25)

For the row—partition of a five—point linear system obtained from the discretization of

conservation equations on a two-dimensional domain N; x N,, Equation (C-25) can be

rewritten:
% P, (T + o) +aWy (T + o)+ (T +or) .
=l # N (T +ot, ) 95, (T +or, ) -5,
for j=11t0N, . (C-26)

The correction vector o of dimension N, is solution of the following tridiagonal linear

system:
ij 0.1 + ij o + ij Oy = Qj, for _] =1 to N,, (C-27a)
where
Ny Np Ne r
ij = Z aSi,j s bPJ = Z (aP+aW+aE) ij s ij = z aNiJ , and Qj = z Ri,j .

i=1 i=1 i=1 i=]

(C-27b)

Hutchinson and Raithby (1986) have studied the rate of convergence of various iterative
solvers and showed that the use of a multigrid method based on the additive correction

strategy of Settari and Aziz (1973) can dramatically reduce the number of iterations needed.

The use of very dissimilar grid spacings results in strongly anisotropic coefficients. A
point Gauss—Seidel solver (GS) reduces the high—frequency modes of the error more
effectively than the lowest—frequency components, so that the asymptotic convergence rate
of the solver depends on the lowest allowable mode in the error. After the high~frequency
modes have been removed, the GS solver appears to "stall" if the grid aspect ratio C =
Az/Ar is large. It can be observed that one application of the GS solver at location (i,)) 1s
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equivalent to advancing the solution at this point by a time step At , which is the
minimum time to transfer information from the explicit—variable nodes (i,j+1), (i+1,)) to
the node (i,j). For two—dimensional steady-state diffusion, the time steps to transfer
information along the grid lines have the form At,=E Ar? and At , = E Az? respectively,
and since Ar<<Az we have At;;=At;. Since the time necessary to smooth any error
component is roughly the time to transfer information over one wavelength, the number of
iterations to smooth all allowable error modes in the r—direction is roughly equal to the
number of nodes N; in that direction. However it takes a time At; = C? Atj; to transfer
information between two adjacent nodes in the weak coefficient direction z (the smoothing
of even the higher—frequency components is therefore extremely expensive in z). The
convergence is governed by the lowest admissible Fourier mode of the error because the
time step implied by the solver is least effective in smoothing these modes. It is clear that
increasing the implicitness of the solver in the strong coefficient direction r will alleviate the
problem. In such case Atj;j= At and the error is smoothed in about Nz line-by-line
sweeps implicit in the r direction. The use of the row—partition additive correction of
Settari and Aziz (1973) will insure a complete propagation of information in the weak
coefficient direction z. Such level shift guarantees that the average error along each row j is
zero (the residual on every block of the partition is forced to zero), so that the k=0 Fourier
mode is eliminated. For this problem, it is then possible to perform a simple two-level
Additive—Correction Multigrid procedure (ACM) as follows: point-GS iterations are
performed on the fine grid (level 1) as long as the rate of decrease in the norm of the
residual is suitable, that is IR&+DII <y IRMI, where | depends of the rate of smoothing
of the high—frequency error of the iterative solver used for the particular problem
considered (n = 0.5 for the point—GS solver applied to the diffusion problem). Then the
level—two shift of Settari and Aziz is performed to remove the low—frequency mode of the
error, and iterations on the level 1 are resumed. The overall rate of convergence is
dominated by the information propagation rate in the weak coefficient direction z. The
line-GS solver (line-by—line technique) propagates information at the rate of roughly one
node Az per iteration, while the line-GS solver combined with ACM propagates
information across the whole domain on each iteration (information propagation refers to
the propagation of Dirichlet-type boundary conditions inside the domain). The point-GS
solver requires roughly C2 N, iterations for propagation across the domain in the weak
coefficient direction z, and the rate of convergence of this solver is accelerated to that of the

line~GS when it is combined with the ACM strategy.
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For variable meshes and flow problems with spatially varying velocities, it may not be
possible to orient the line solver in the strong coefficient direction, because it varies. For
high—Peclet convection combined with diffusion, the large coefficients are aligned with the
flow direction. The propagation of the boundary conditions arises by diffusion normal to
the flow (between the stream tubes). The time step implied in the solver is now dominated
by the convective time. It takes many such time steps to diffuse information normal to the
flow, which causes the iterative solver to stall. In such case, convergence can be enhanced
by an additive correction based on stream tube blocks (flow rings).

Because the solution of the additive block correction equations is very inexpensive for two—
dimensional problems (the use of row— or ring—shaped blocks leads to a tridiagonal linear
system for the block correction vector), it is generally more efficient to perform an ACM
correction after each fine grid iteration, since the convergence rate of the overall algorithm
is optimized. Inexpensive iterations on the level-two coarse grid rapidly diminish exactly
those components of the error (low—frequency) that are so difficult and expensive to reduce

by fine—grid iterations alone.
C-11. ACM VERSUS BRANDT-TYPE MULTIGRID ALGORITHM

In the multigrid (MG) method of Brandt (1980, 1984), the conservation equations must be
discretized on different (finer to coarser) grids, and difficult decisions must be made
concerning the treatment of boundary conditions, the transfer of residuals or the
interpolation of the dependent variables, so that this type of algorithm is rather complex to
program. By contrast, in the Additive Correction Multigrid method (ACM) proposed by
Hutchinson and Raithby (1986), summation of the equations over a block of cells is
equivalent to demanding integral conservation over each block or coarse—grid cell, and
constrains these choices. Hutchinson and Raithby have shown that ACM was as efficient
as MG for Poisson—type problems, while much easier to implement. Numerical tests
revealed no performance degradation of ACM with either Neumann or Dirichlet boundary
conditions. Unlike the MG algorithm of Brandt, ACM obtains the discretized correction
equations for the coarse grid directly from the fine—grid equations by application of the
ABC strategy of Settari and Aziz. This distinction is important for two reasons. First,
discretization is required on the fine grid only, thus reducing complexity and cost as well as
eliminating the possibility of discretization inconsistencies between the coarse and fine
grids. Second, because the fine—grid discretization equations are conservative and the

coarse—grid correction equations are formed by simply combining the fine-grid equations,
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the resulting coarse—grid equations are also conservative. Solution of the coarse—-grid
equations and subsequent correction of the fine—grid solution field yields a field that is

conservative over each block.
C-12. NON-ITERATIVE SPLITTING METHODS

To resolve couplings and non-linearities of the flow conservation equations, iterative
methods such as SIMPLE-type pressure—correction algorithms have been used
extensively. However, iterative methods are costly and therefore not very attractive for
unsteady calculations. Non-—iterative splitting procedures have been considered to speed up
calculations and reduce the complexity of programmation as well as storage requirements.
Originally these methods have been applied to solve multi-dimensional problems as a series

of linearized one—dimensional problems.

Consider the two—dimensional heat diffusion equation:

du _

—a't‘—V{a%+a§}u

(C-28)

While the explicit discretization of Equation (C-28) is conditionally stable
( 2v At (217+131—2)< 1 ), the following combined implicit—explicit representation is
X y

unconditionally stable if 6 > 1/2:

wtlat =y (32 + 33} [ouneie (1 - 0] (C-29)

The Crank—Nicolson scheme is obtained for 8=1/2 and is second—order accurate in time.
While in one dimension the fully—implicit and Crank-Nicolson schemes result in a
tridiagonal linear system that can be very efficiently solved with Thomas algorithm, their
extension to 2 and 3 space dimensions leads to algebraic equations that contain 5 or 7
unknowns, respectively. Although the resulting equations are still unconditionally stable,
they are no longer tridiagonal and they must be solved by direct elimination or iterative

procedures, which require a substantially greater computational effort.
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C-12.1. Alternating Direction Implicit Approximations (ADI)

To overcome the shortcomings of the common implicit methods for two—dimensional
problems, Peaceman and Rachford (1955) and Douglas (1955) have developed a variation
of the Crank—Nicolson approximation known as an Alternating Direction Implicit (ADI)
method. A number of variations have been proposed. The Peaceman—Rachford ADI form

of Equation (C-28) is a two—step scheme which proceeds as follows:

*

u-un 2 % 2
B U —v [9¢u*+ 92 un
A2 [" y }

+l_y*
unAm/zu =v [0 u"+ 3 un1]

(C-30)
The diffusion term has been split into its two spatial components and each step results in a
tridiagonal linear system. This ADI scheme is second—order accurate in time and
unconditionally stable for the diffusion equation. However it cannot be extended to 3
dimensions, and Douglas and Gunn (1964) have proposed an ADI scheme that is
unconditionally stable and second-order accurate for the three-dimensional diffusion
equation. Their algorithm retains these properties of stability and accuracy for any number
of commutative splitting operators and for non—commutative operators in two dimensions.
As an illustration, the ADI procedure of Douglas and Gunn is applied to the following
implicit equation:

ﬂ;—U“qF, + Fp)[6unt1+ (1-0)un] | (C-31a)
which can be rewritten:

(1- 04t (F) + Fy)} unt = {1+ (1-0)At (F) + Fy)) un = qn . (C-31b)
The procedure is formed of the following two steps:

[1-8ALF,) u” - {8At Fy) un = g (C-32a)

{1- 8ALFy ) un! - {BALF ) u = qn (C-32b)

Subtracting Equation (C-32b) from Equation (C-32a) gives:
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u* = {I- 6AUE, ) unt! +{0At Fyjun | (C-33)
and u* can be eliminated from Equation (C-32a) to yield:
[1-0AL(F) + Fy)} un+! = qn - (0At)* (F1Fy) (un+! - un) | (C-34)

It can be seen that the ADI scheme of Douglas and Gunn applied to two—dimensional
problems is equivalent to the Jakonov factorization. Equation (C-34) is of the same order
of accuracy as Equation (C-31a), and is second—order accurate in time when 6=1/2. For
solution efficiency, it is preferable to introduce ¢ =u - u?, and rewrite Equations (C-31)

as:

o™ = AU, + Fa)[un + 86" (C-35a)
or:

(1-6AL(F) + F2)} 0™ = At{F| + FJun . (C-35b)
The Jakonov factorization of Equation (C-35b) takes the form:

(1-0AtFi{I-0At Fy) 0™ = At(F, + Fy)un | (C-36)
which is easily solved by the following two—step scheme:

{I-8ALF} ¢ = At{F, +F)un

l *
(1-eatFo}o™' =¢" . (C-37)
These ADI schemes are very efficient when the operators {F;} are linear.

Douglas and Jones (1963) have proposed various splitting predictor—corrector methods for

resolving the non—linearity of the one-dimensional convection—diffusion equation:

du _
-a—t——{F+G(u)}u , (C-38)
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where F is a linear operator (diffusion) and G(u) is non—linear (convection). The first
predictor consists in estimating the solution u* at time (n+1/2)At by using successive

substitution linearization of the non-linear operator G. Douglas and Jones have considered

the following predictors:

u u — n n
sz - (FHuH{Gm)un, (C-392)

wun g )[ : ]+(G(un)}un

At/2 (C-39b)
u*-un _ n [u*+ u"}
At/2 tF+ Gum) 2 7 (C-39¢)

Equation (C-39a) is the Crank—Nicolson predictor, while Equation (C-39b) is a modified
Crank-Nicolson predictor. Gary (1964) has proposed a predictor similar to Equation
(C-39c¢) to estimate the solution u* at the new time step (n+1)At:

*- n _ n *+ n
W = (F o+ GQun) [ W] (C-40)

After the corrector step is performed, the estimate of the solution un*1/2 at time (n+1/2)At
was taken as u* if one of the predictors (C-39) was used, or as (u*+um)/2 if predictor (C-
40) was employed, and the solution un+! at the advanced time was obtained from the

following corrector:

untl-yn _ (F + Glun+112)) [MJ _

At 2 (C-41)

Gary (1964) has also devised an iterative explicit predictor method for the solution of
Equation (C-38):

u0) = yn ,
u(k“)— un _ {F u(k)+ u“)}[u(k)+ u"} , for k=0 to p-I, (C-42a)

2 2
un+! = u(p ,
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which unfortunately is unstable for certain values of p, and whose admissible time steps are
restricted. Gourlay and Morris (1968) have proposed a variation of Gary's unstable

predictor that is unconditionally stable:

LI(O)A-_ﬁnz{F+G(un)}un, where ﬁizgnl—;llii ’
t

L‘“;_’[-L’:(F}[%—M]%[{G(un)) un + {Gut®)} uksD], for k=0 to p-1,

un+l = uP) | (C-42b)

In practice, 2 iterations (p=2) are sufficient to obtain convergence to the order of accuracy
of the overall method. The same authors have extended their algorithm to non-linear two—

dimensional problems of the following type:

88_1: ={Gi(w) + Gx(w}u . (C-43)

The Crank—Nicolson discretization scheme of Equation (C-43) reads:

ue = L{{Gi ey unt! +{Gim) ur] + Z[{Ga(unehumt +{Gaqumy) w]

or

{I - %[Gl(u“”) +G2(u“+‘)]} un+l = {I + %[Gl(u“) +G2(u“)]} un (C-44)

which combines temporal and spatial implicitnesses. The approximate Jakonov

factorization of Equation (C-44) takes the form:

I-—A;G](un“)}{I-%Gz(uw un+! ={I+%Gl(un>}{1+%cz(un) un = qn . (C-45)

To estimate the operators {G} and {Gy} at the new time step, Gourlay and Morris
proposed the following explicit stable predictor:

xx N

u -u

At

= <Gl(u") + G?_(u")> u" (C-46)
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1) onan uniform grid (Ax=Ay) , so that the two-

~ 1
where u; =4— (uM‘j U Y

step ADI scheme reduces to:

(C-47)

Also, Chorin (1968) has adapted the Peaceman—Rachford predictor—corrector method to the
solution of the two—dimensional convection—diffusion transport Equation (C-43):

W = (Gi(um) u” + {Ga(um) un

MU = (G u” + {Ga(u)) ur! (C-48)

The Navier-Stokes equations constitute a system of non~linear coupled partial differential
equations for the density, flow field components and temperature. The sequential (or
segregated) numerical solution of the corresponding linearized finite—difference equations
necessitates that the solution procedure be applied repeatedly to restore the couplings and
the non-linearities. If the solution procedure itself is iterative, it is possible that the total
number of iterations required is not significantly increased by the couplings and the non—
linearities (Ghia, in Minkowycz et al. 1988, p. 306). But this is generally not the case.

To overcome these shortcomings, Briley and McDonald (1975, and 1977) and Beam and
Warming (1976) have proposed a block—ADI splitting algorithm for the simultaneous
solution of the unsteady compressible Navier-Stokes equations. Unlike the methodology
proposed by Gourlay and Morris (1968), terms involving non-linearities at the implicit
time level are linearized by Taylor expansion about the solution at the known time level
(Newton-Raphson linearization). The result is a system of multidimensional coupled (but
linear) difference equations for the dependent variables at the implicit time level. To solve
these equations, the ADI factored scheme of Douglas and Gunn is introduced which leads
to systems of coupled linear equations having narrow block-banded matrix structures,
which can be solved efficiently by standard block—elimination methods. Properties are
taken to be constant and the pressure is eliminated as a dependent variable by means of the

equation of state (the perfect gas law was used, which is convenient but not essential).
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Energy dissipation and cross—derivative viscous terms are treated explicitly for efficient
spatial factorization. However, since any number of splitting operators can be used,
mixed—derivatives can be treated implicitly within the ADI framework, at the expense of
computational efficiency. Anyhow, the explicit treatment of the aforementioned viscous
and dissipation terms had no observable adverse effect on stability. Because the
conservative form of the compressible Navier—Stokes equations was discretized using a
two time level scheme, Briley and McDonald pointed out that the vector of the dependent
variables y must be taken as y = {p,pU,pe} to maintain second—order accuracy in time
for the overall scheme (obtained when 6=1/2). The two-dimensional compressible

Navier-Stokes equations can be written in the following condensed form:

d
F=61w+6aw) | (C-49)

where G1 and G; are non-linear multicomponent operators associated with space
dimension 1 and 2 respectively, and the implicit-explicit temporal discretization scheme

gives the analog of Equation (C-49) as:

n+l_ 4,0
\—VT\" = 0[G(y™!) + Go(ym )] + (1-6) [G1(y™) + Ga(y™)] . (C-50)

The non-linearity of the operators G;j is treated via Newton—Raphson linearization:

Gi(y™) = Gy(y") +

daG;|" n+l_ yn 2
'aﬂ [yt yn] + O (ar)
= Gioy™ +[A [y ] + O @) (C-51)

where the Jacobians [A;] are linear operators. Introducing ¢ =y - y", and making use of

linearization (C-51) into (C-50) leads to the following equation:
1
[1-8At (A +A) ™ = AL[G (Y™ + Ga(y™M)] = Q" . (C-52)
The ADI factored scheme of Douglas and Gunn applied to Equation (C-52) gives:

[1-0AtA|[1-6At A, 0™ =Q", (C-53)
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which is equivalent to the solution of two block-tridiagonal systems:

[1-0atA,]¢" =qn

[1-8atA)0™ =0 . (C-54)

For two or three dimensional problems, Alternating Direction Implicit (ADI) methods are
very attractive: instead of solving a 5—point (or 7—point in three dimensions) linear system,
the ADI splitting solves successively 2 or 3 tridiagonal systems. Unfortunately, it has been
found that such spatial splitting methods have a rather poor accuracy for disturbances
which propagate skew to the coordinate axes. This suggests that a more productive
approach would be to split by physical phenomena as well. One step could solve sonic
propagation implicitly in all directions, with further steps involving implicit convection
terms, possibly split by spatial coordinates. Also, when axial velocities are much larger
than transverse velocities, it is advantageous to overcome the convection limit on the time

step in the axial direction only.
C-12.2. Marker-And-Cell Formulation and Projection Algorithms

These ideas have been applied by several authors to the pressure—velocity formulation of
the Navier—Stokes equations:

gt(pU)=-§P+5i7[r-(pU)U]+F=-§P+G(U)

%—f +div(pU)=0 (C-55)

where the convection—diffusion non-linear operator G has been introduced for simplicity.
One of the earliest and most widely used methods for solving the unsteady incompressible
version of the system of Equations (C-55) is the Marker And Cell (MAC) method of
Harlow and Welch (1965). The method is characterized by the use of a staggered grid and
the solution of a Poisson equation for the pressure at every time step. Although the original
form of the MAC method has certain weaknesses, the use of a staggered grid and a Poisson
equation for the pressure has been retained in many modern methods derived from the
MAC method, such as the SIMPLE-type procedures. The method was developed initially

for unsteady problems involving free surfaces. To allow the surface location to be
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determined as a function of time, markers (massless particles) are introduced in the flow.
These markers are convected by the velocity field but play no role in determining the
velocity or pressure fields. In the MAC formulation, discretization of the incompressible
version of Equations (C-55) gives the following algorithm, written in symbolic vector

form:

p Un+i; yn = . Vpr+l 4 G(UM

div(ur+)=0 . (C-56)

By treating the convection—diffusion terms explicitly, the advanced-time velocity field can
be expressed in terms of the advanced-time pressure gradient. Substituting the velocity
field in the continuity equation gives an elliptical Poisson equation that is solved for the
advanced-time pressure field. The MAC method has surprisingly excellent stability
characteristics. However, because of the explicit differencing of the convection—diffusion
terms in the momentum equations, the time step for stable solution is limited by the
constraining parabolic stability criterion (Peyret and Taylor 1983, page 148).

The projection method proposed by Chorin (1968) is closely related to the MAC method.
In the present notation the projection method splits the unsteady incompressible momentum
equations into two steps by introducing an auxiliary velocity field which is calculated while
omitting the pressure gradient term:

u-U" _ oot
P G@U)

(C-57a)
U™ U* _ ypnel

P ve (C-57b)

div (U"+])=0 } (C-57¢)

Equation (C-57a) is solved using the Peaceman-Rachford ADI splitting, while Equations
(C-57b) and (C-57¢) are combined and solved by a Dufort-Frankel type relaxation scheme
(Chorin 1968). Originally the projection method was formulated on a non-staggered grid.
However, Peyret and Taylor (1983) recommended that the projection method be used with
a staggered (MAC) grid. In the first mesh used by Chorin, the velocity and pressure are

defined at the nodes of the mesh. The advantages of such a mesh are its simplicity and the
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fact that the velocity is defined, in particular, on the boundary where this quantity is
generally prescribed. On the other hand, one of its disadvantages is that the pressure is
also defined on the boundary. Since there is generally no boundary condition for the
pressure, it is necessary to devise a special technique to compute the pressure on this
boundary. In the staggered MAC grid, the pressure is defined at nodes, while the
velocities are defined at the faces between the cells. Therefore, the pressure is no longer
defined on the domain boundary, and the same formulas can be used to compute the whole
pressure field, so that the Poisson equation for the pressure automatically satisfies the
discrete form of the integral mass conservation over the entire physical domain. So it is
necessary to employ non—centered differences near the boundary. But this inconvenience
is largely balanced by the advantage of the MAC mesh for the pressure computation.

Goda (1979) has used the projection method to obtain the steady viscous flow in two— and
three—dimensional driven cavities. This author used an ADI fractional scheme to solve
Equation (C-57a), which is conditionally stable due to the non-linearities in the
convection—diffusion operator G.

Another variant of the basic MAC formulation is that due to Hirt and Cook (1972). In the
present notation, an auxiliary velocity field U* and a pressure correction P* are obtained
from:

U*-U" _ opn
P = VPT+GQ) (C-58a)

yr+l.y* _ —’P*
P v (C-58b)

div(ur+l)=¢o . (C-58¢)

The pressure correction is used to insure that Un+! satisfies continuity, and the new
pressure is obtained as P+ = Pn + P*. Hirt and Cook used the above formulation to

examine incompressible (laminar) viscous flows past three—dimensional structures.
Harlow and Amsden (1971) extended the MAC method of Harlow and Welch (1965) to the

conservative form of the unsteady compressible flow equations. In the present notation,
Equations (C-55) were discretized as follows:
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(puU)™l-pu)" S

= = - V[oP* + (1-0)P"] + G(U™) (C-59a)
n+l_ N
PP 4 aiv[opu)™! + (16)pU)"] =0 . (C-59b)

The Poisson equation for the stared pressure field is obtained from the continuity Equation
(C-59b) by making use of Equation (C-59a) to eliminate the advanced time mass fluxes.
The advanced—time density is linearized in terms of the stared pressure by using the

equation of state:

ap\n

5p [p* - p]

n+l _ AN
P =P 5P, ‘ (C-59¢)

Once the elliptical Poisson equation is solved for the stared pressure field, the advanced-
time density is calculated from Equation (C-59c¢) and the new velocity field is obtained from
Equation (C-59a). The energy equation is then solved for the new temperature field and the
advanced-time pressure field is calculated as a function of density and temperature from the
equation of state. The pressure-velocity coupling algorithm of Harlow and Amsden is very
attractive since it applies to any Mach—number flow regimes. However, the time step is
limited due to the fact that the convection-diffusion terms in the momentum equations are

discretized explicitly.

The splitting algorithm of Harlow and Amsden for compressible flow has been extended by
Liles and Reed (1978) and Stewart (1981) to the non—conservative form of the unsteady
incompressible flow equations. The time step in the resulting TRAC code is still limited by
convection and diffusion. The advantage of the non—conservative form is that it separates
the effect of physical phenomena. Each of them, such as convection, diffusion, sonic
propagation and interphase exchanges, has its own characteristic time scale. If we wish to
evaluate the mechanical stresses following an external laser heating of the heat pipe,
tracking the pressure waves is necessary, at least in the early moments since the waves are
dying out with time. We would apply explicit differences to sonic propagation terms and
compute on a time scale 10-3 s. In this case, there is no need for implicit differencing of
convection—diffusion terms, but interphase exchanges would probably be the difference
implicitly. Clearly, it is important, for efficient difference schemes, to concentrate the

computational effort on features of the solution which have practical significance. For
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problems where the flow is changing only very slowly with time, or when it is desired to
reach the steady flow quickly, large time steps and unconditionally stable fully—implicit
schemes may be used. For time steps large enough to justify implicit treatment of
convection and diffusion, splittings by physical phenomena and spacial coordinates may be
combined.

C-12.3. Non-Iterative PISO Procedure (Pressure-Implicit with Splitting
of Operators)

The semi-implicit pressure—velocity algorithms described above are conditionally stable
and not particularly accurate because of the approximate way the couplings and non—
linearities are treated. Such drawbacks could be removed through the use of fully implicit
iterative methods such as SIMPLE or other similar algorithms. Unfortunately, such
iterative methods are not very attractive for unsteady flow calculations and not very efficient
for the modeling of compressible flows. Recently, Issa (1986) developed PISO (Pressure—
Implicit with Splitting of Operators), a non-iterative method whose stability is little
impaired by the splitting procedure. PISO has the ability to cope with large time steps,
usually larger than the physical time step required to accurately describe the transient
evolution of the solution. Note that implicitness of the scheme is required for fast solution
calculation since the physical time step is usually very much larger than the time-step
stability limit of the explicit discretization scheme. As in the previous pressure-velocity
splitting algorithms, the pressure is treated as one of the main variables, so that the
incompressibility limit is also correctly handled by PISO.

For simplicity, let us consider first the PISO algorithm as it is applied to solve the
discretized incompressible flow equations:

Un+1_ yn _

= - ypn+l! + G(Un+1)
At

div(uUm)=0 . (C-60)

The algorithm consists of a predictor step followed by two successive corrector steps:
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P U0 ypn s G"(U™) (C-61a)

At
p L=U2 = vp* + Gr(U™) L div (@) =0 (C-61b)
0 W? verl + GrU) , div (U™h=0 . (C-61c)

The diffusion—convection operator G is non-linear and can be linearized using a standard
linearization technique or the Newton—Raphson approximation, or the same predictor—
corrector splitting can be used to resolve the non—linearities. The predictor step consists of
solving Equation (C-61a) for the stared velocity field. Convection and diffusion terms are
treated implicitly. The corrector phase is constituted of two identical pressure correction
steps which lead to divergence free velocity fields. The predictor Equation (C-61a) and
first corrector Equation (C-61b) are identical to Equations (C-58) for Hirt and Cook's
algorithm (1972). The role of the second corrector step (Equation C-61c¢) is to update the
convection/diffusion terms. Issa has shown that a minimum of two corrector steps must be
performed before the velocities and pressures thus obtained can be legitimately regarded as
solutions. Issa showed that the non—iterative PISO splitting procedure constituted of two
corrector steps is third—order accurate in time, which is higher than the order of the two-
time step discretization scheme. Convection and diffusion are treated explicitly in the
momentum conservation equation so that the Poisson equation for the pressure field is
easily formed by substituting the advanced~time velocity field into the continuity equation.
Note that the Poisson equation for the pressure should not be derived from the differential
form of the momentum and continuity equations, but is obtained from the combination of

the discretized forms of these equations for consistency.

As for stability, the exact solution of Equations (C-60) is unconditionally stable since the
system is fully implicit. However, the corrector—predictor splitting solves them
approximately so that stability may be altered. In any event, the stability will be greatly
affected by the non-linearity of the actual system of equations. To remedy this situation,
the corrector Equations (C-61b) and (C-61c) are replaced by ones which are intrinsically
more stable, by treating the diagonal part Gg of the convection—diffusion operator G
implicitly (G = Gol + G ):
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p UTU“ - GyU =- VP* + G"(UY (C-62b)
P %ﬂ - GyUM! = VPl 4 G(T) | (C-62¢)

The resulting Equations (C-62b) and (C-62c) possess much smaller error amplification
factors for the same time step. Note that the corrector Equations (C-62) are identical in
form to Equations (C-14) for the SIMPLE—Revised algorithm of Patankar. Because the
equations may not be solved exactly if an iterative solution method is selected, the velocity
field may not be exactly divergence free, so that terms of the form div(U*) must be kept in

the Poisson equation to avoid mass error accumulation.

Issa has extended the PISO algorithm to solve the following discretized compressible flow
equations for a perfect gas:

n+l_ n -
(pU) = (pU) =- VPl 4 G(U™M™) (C-63a)
pn+1_ pn
5 +div(pU) ) (C-63b)
n+l_ n
(pe) " (pe) = H(e“+]) - div (PU) n+l 4 J(U"+1) (C-63c)
Pl =r(pT)™!, e=e(T) | (C-63d)

where G and H are convection—diffusion operators and J is the stress work operator.
Because the coupling now involves the density and temperature, an additional corrector
stage must be incorporated to achieve third—order accuracy in time (however, a two—stage
scheme still achieves second—order accuracy in time). The merits of PISO stem largely
from its ability to resolve a pressure field free from the influence of errors in div(U).
Again, the convection—diffusion operators G and H are split into their diagonal and off—
diagonal parts to enhance the stability of the algorithm. The two-stage scheme consists of
the following steps: momentum predictor, first momentum (pressure) corrector, energy
predictor and second momentum corrector, which read as:
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pn U—Z“Qi - GoU =-VP+G(U) (C-64a)

—
~~

(pPU)-(pU)" G_lg(pu)* =-VP* + G(U)

At p
* n "
PP vaivipuy =0, p'=Fg (C-64b)
*_ n o
(ﬂe_)jfp_e)_ - Hge* = H(e") - div (PU)" + J(U") (C-64¢)

U U S0 puy+ =- Ve + G(UY

P**-P" . ok ** P
e +div(pU) " =0, p =T

%k ¥

(C-64d)

*

In the two-stage scheme, the stared temperature field is taken as the advanced-time
temperature, while the double—stared quantities are taken for the new pressure, density and
velocity fields. For the three—stage scheme, two additional steps are performed, an explicit

energy corrector, and a third momentum (pressure) corrector:

*Fantl _ n —
p c” _ (pe)” Hy en+! = H(e") - div (PU)™ + J(U™) (C-64¢)

n+1 _ n - —
(PUF-(pU)" Cltl (PUP*! = - VPP 4+ G(U*)

At
pn+l' p" . +1 _ n+l _ P!
Y div (pUP*t =0, p™l = el (C-64f)

Note that the stress work in Equation (C-64¢) and the off—diagonal part of the convection—
diffusion operator in Equation (C-64f) are not reevaluated at the most recent double—stared
velocity field for computational efficiency. The fields obtained at the end of the splitting
procedure are approximations to the exact ones with a temporal accuracy comparable to or
better than the accuracy of the two-level discretization scheme. For a perfect gas, Issa
found that the two—stage scheme was second—order accurate in time, while the three—stage
scheme was third—order accurate. PISO treats the couplings with the energy and state

equations implicitly, so that relatively large time steps can be employed without generation
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of instabilities (the time step limitation is dominated by the treatment of the non-linearities

since the procedure is non—iterative).

Issa, Gosman and Watkins (1986) have demonstrated that PISO is of good temporal
accuracy, is faster than common iterative techniques for transient flow calculations, is
stable for large time steps (hence as efficient as SIMPLEC for steady problems) and
applicable to compressible flow regimes as well. The non-linearity arising from the
dependency of the convection—diffusion operators G and H on the field variables
themselves is handled by evaluating their linearized coefficients from the old time level
values. Although this practice is only first—order accurate in time it is of the same order of
accuracy as the Euler temporal difference scheme, and is therefore consistent with it. If a
Crank-Nicolson type discretization scheme is employed, which is second—order accurate in
time, the non-linearities can be resolved within the same accuracy by using the same
splitting algorithm.

319



-y

—

b o i A

il g

Lok

R







